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Abstract 

In this paper, we obtain random coupled coincidence point theorems  
in an ordered metric space X for a pair of random mappings ×Ω:F  

( ) XXX →×  and XXg →×Ω:  under certain contractive conditions 

which are commutative under generalized altering distance function         
in five variables. Random coupled fixed point results (as corollaries) 
under certain contractive conditions will be excerpted from our 
theorems. We also support our result by an example. 
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1. Introduction 

The theory of random mappings is a substantial branch of probabilistic 
analysis which plays pivotal role in many applied mathematics. Random 
fixed point theorems for contraction mappings on various spaces have been 
established by several authors [13, 14, 16-22, 27, 33, 41, 44, 45]. 

In 1994, the notion of partial metric spaces was initiated by Matthews 
[28]. He extended the Banach contraction principle from metric spaces to 
partial metric spaces. 

Definition 1.1. A partial metric on a nonempty set X is a function 
+→× RXXp :  such that for all :,, Xzyx ∈  

( )1p  ( ) ( ) ( ),,,, yypyxpxxpyx ==⇔=  

( )2p  ( ) ( ),,, yxpxxp ≤  

( )3p  ( ) ( ),,, xypyxp =  

( )4p  ( ) ( ) ( ) ( ).,,,, yzpzxpzzpyxp +≤+  

A partial metric space is a pair ( )pX ,  such that X is a nonempty set and 

p is a partial metric on X. 

One of the recent trends, initiated by Ran and Reurings [37], in fixed 
point theory, is to study the existence and uniqueness of certain operators in 
the context of partially ordered metric spaces (see for example, [2, 1, 4, 5, 15, 
26, 31, 32]). 

In 1984, Khan et al. [24] introduced the notion of an altering distance 
function for one variable as the following: 

Definition 1.2. A function [ ) [ )∞+→∞+ϕ ,0,0:  is called altering 

distance function if and only if 

(1) ϕ is continuous, 

(2) ϕ is nondecreasing, 

(3) ( ) .00 =⇔=ϕ tt  
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Several authors worked in this notion and established nice results for 
applied it to obtaining fixed point results in metric spaces. 

In recent years, Choudhury and Dutta [8] generalized this notion to a 
two-variable function and it was also extended to three-variable function by 
Choudhury [9] as the following: 

Definition 1.3. A function [ ) [ ) [ ) [ )∞+→∞+×∞+×∞+ϕ ,0,0,0,0:  is 

said to be a generalized altering distance function if and only if 

(1) ϕ is continuous, 

(2) ϕ is nondecreasing in all the three variables, 

(3) ( ) .00,, ===⇔=ϕ zyxzyx  

In 2008, Rao et al. [36] introduced the altering distance function in five 
variables to generalize the results of Choudhury [9] as follows: 

Definition 1.4. A function 

[ ) [ ) [ ) [ ) [ ) [ )∞+→∞+×∞+×∞+×∞+×∞+ϕ ,0,0,0,0,0,0:  

is said to be a generalized altering distance function if and only if 

(1) ϕ is continuous, 

(2) ϕ is nondecreasing in all the five variables, 

(3) ( ) .00,,,, =====⇔=ϕ twzyxtwzyx  

In 2006, the concept of coupled fixed point was presented by Bhaskar 
and Lakshmikantham [5]. They studied some nice coupled fixed point 
theorems, after three years, Lakshmikantham and Ćirić [26] introduced the 
notion of a coupled coincidence point and coupled fixed point of mappings. 
Many theorems under this title were recognized, see [10-12, 23, 39, 40, 42, 
43, 3, 34, 35]. 

Recall that if ( )≤,X  is a partially ordered set and XXF →:  is such 

that for ,, Xyx ∈  yx ≤  implies ( ) ( ),yFxF ≤  then a mapping F is said to 

be nondecreasing. Similarly, a nonincreasing mapping is defined. 



R. A. Rashwan and H. A. Hammad 128 

The same authors [5] introduced the following notions of a mixed 
monotone mapping as: 

Definition 1.5. Let ( )≤,X  be a partially ordered set and ×XF :  

.XX →  The mapping F is said to has the mixed monotone property if F is 
monotone nondecreasing in x and is monotone nonincreasing in y, that is, for 
any ,, Xyx ∈  

( ) ( )yxFyxFxxXxx ,,,, 212121 ≤⇒≤∈  

and 

( ) ( ).,,,, 212121 yxFyxFyyXyy ≥⇒≤∈  

Definition 1.6 [5]. An element ( ) XXyx ×∈,  is called a coupled fixed 

point of the mapping XXXF →×:  if 

( ) xyxF =,   and  ( ) ., yxyF =  

The concept of the mixed monotone property is generalized in [26] as: 

Definition 1.7. Let ( )≤,X  be a partially ordered set and ×XF :  

,XX →  .: XXg →  The mapping F is said to has the mixed g-monotone 

property if F is monotone g-nondecreasing in x and is monotone                  
g-nonincreasing in y, that is, for any ,, Xyx ∈  

( ) ( ) ( ) ( )yxFyxFxgxgXxx ,,,, 212121 ≤⇒≤∈  

and 

( ) ( ) ( ) ( ).,,,, 212121 yxFyxFygygXyy ≥⇒≤∈  

Clearly, if g is the identity mapping, then Definition 1.7 reduces to     
Definition 1.5. 

Definition 1.8 [26]. An element ( ) XXyx ×∈,  is called a coupled 

coincidence point of the mappings XXXF →×:  and XXg →:  if 

( ) ( )xgyxF =,   and  ( ) ( )., ygxyF =  
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Definition 1.9 [1]. Let X be a nonempty set, XXXF →×:  and 
.: XXg →  Then F and g are commutative if for all ,, Xyx ∈  

( )( ) ( ) ( )( ).,, ygxgFyxFg =  

2. Preliminaries 

Throughout this paper, ( )ΣΩ,  denotes a measurable space consisting of 

a set Ω and sigma algebra Σ of subsets of Ω, ( )dX ,  stands for a complete 

metric space. 

Definition 2.1 [6]. A mapping Xf →Ω:  is said to be measurable if 

( ) Σ∈− Bf 1  for every Borel subset B of X. 

Definition 2.2 [7]. A mapping XXT →×Ω:  is a random operator if 
for each fixed ,Xt ∈  the mapping ( ) XtT →Ω:.,  is measurable. 

Definition 2.3 [6]. A measurable mapping X→Ωξ :  is a random fixed 

point of a random operator XXT →×Ω:  if ( )( ) ( )tttT ξ=ξ,  for each 

.Ω∈t  

Definition 2.4 [25]. A measurable mapping X→Ωξ :  is a random 

coincidence of the random operators XXT →×Ω:  and XXg →×Ω:  

if ( )( ) ( )( )ttgttT ξ=ξ ,,  for each .Ω∈t  

Definition 2.5 [25]. Let ( )dX ,  be a separable metric space, ( )ΣΩ,  be a 

measurable space and ( ) ,: XXXT →××Ω  .: XXg →×Ω  Then T and 

g are commutative if 

( ) ( )( )( ) ( )( )( )yxwTgygxgT ,,,,,,, ω=ωωω  

for all .,, Xyx ∈Ω∈ω  

3. Main Results 

The following lemma is used in the sequel: 
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Lemma 3.1. Let ( )dX ,  be a metric space and let ( ){ }nyg  be a sequence 

in X such that 
 ( ) ( )( ) .0,lim 1 =−

∞→
nn

n
ygygd  (1) 

Suppose that ( ){ }nyg  is not a Cauchy sequence. Then there exist an 

0>ε  and two sequences of positive integers ( ){ },kn  ( ){ },km  ( ) ( )knkm >  

k≥  such that the following four sequences tend to ε: 

( ( ) ( )) ( ( ) ( )),,,, 1+kkkk nmnm ygygdygygd  

( ( ) ( )) ( ( ) ( )).,,, 111 +−− kkkk nmnm ygygdygygd  

Proof. Suppose that ( ){ }nyg  is not a Cauchy sequence. Then there exist 

0>ε  and two sequences of positive integers ( ){ },kn  ( ){ }km  for each integer 

k such that 
 ( ( ) ( )) ,, ε≥kk mn ygygd  (2) 

let km  be the least integer exceeding kn  with ( ) ( ) ,kknkm ≥>  satisfying 

(2). It follows that 
 ( ( ) ( )) ,, 1 ε<−kk mn ygygd  (3) 

from the triangle inequality, we can write 

( ( ) ( )) ( ( ) ( )) ( ( ) ( )),,,, 11 kkkkkk mmmnmn ygygdygygdygygd −− +≤  

( ( ) ( )) ( ( ) ( )) ( ( ) ( )),,,, 11 kkkkkk nnmnmn ygygdygygdygygd ++ ≤−  

( ( ) ( )) ( ( ) ( )) ( ( ) ( )),,,, 11 kkkkkk mmmnmn ygygdygygdygygd −− ≤−  

( ( ) ( )) ( ( ) ( )) ( ( ) ( )).,,, 1111 kkkkkk mmmnmn ygygdygygdygygd −+−+ ≤−  (4) 

Taking the limit as ∞→k  in terms of (2)-(4) and using (1), we have 

( ( ) ( )) ( ( ) ( ))kkkk mn
k

mn
k

ygygdygygd ,lim,lim 1+
∞→∞→

==ε  

( ( ) ( )) ( ( ) ( )).,lim,lim 111 −
∞→

−+
∞→

== kkkk mn
k

mn
k

ygygdygygd  

This completes the proof of Lemma 3.1. 
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Remark 3.1. If we put ,Ig =  where I is the identity mapping in Lemma 

3.1, we have Lemma 10 of [30]. 

The following theorem is a generalized version Theorem 11 of [30]. 

Theorem 3.1. Let ( )≤,X  be a partially ordered set and suppose that 

there exists a metric d on X such that ( )dX ,  is a complete metric space. 
Suppose XXXF →×:  and XXg →:  are such that F has the mixed  
g-monotone property and 

( ) ( )( )( )vuFyxFd ,,,1Φ  

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )[ ] ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
Ψ≤

yxFgudvuFgxd

vuFgudyxFgxdgvgydgugxd

,,,,2
1

,,,,,,,,,,
1  

( ) ( ) ( )( ) ( )( )

( )( ) ( )( )[ ]
,

,,,,2
1

,,,,,,,,,,
2 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
Ψ−

yxFgudvuFgxd

vuFgudyxFgxdgvgydgugxd
 (5) 

for ,,,, Xvuyx ∈  for which ( ) ( )ugxg ≥  and ( ) ( ),vgyg ≤  where ,1Ψ  

2Ψ  are generalized altering distance functions and ( ) ( ).,,,,11 xxxxxx Ψ=Φ  

Suppose ( ) ( ),XgXXF ⊆×  where g is continuous and commutes with F 

and suppose either 

(a) F is continuous or 

(b) X has the following properties: 

  (i) if a nondecreasing sequence ,xxn →  then xxn ≤  for all n, 

(ii) if a nonincreasing sequence ,yyn →  then nyy ≤  for all n. 

If there exist Xyx ∈00,  such that ( ) ( )000 , yxFxg ≤  and ( ) ≥0yg  

( ),, 00 xyF  then there exists ( ) Xyx ∈,  such that ( ) xyxF =,  and ( )xyF ,  
.y=  

That is, F and g have a coupled coincidence. 

Proof. Let Xyx ∈00,  be such that ( ) ( )000 , yxFxg ≤  and ( ) ≥0yg  

( )., 00 xyF  Since ( ) ( ),XgXXF ⊆×  we can choose Xyx ∈11,  such that 
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( ) ( )001 , yxFxg =  and ( ) ( )., 001 xyFyg =  Again, from ( ) ( ),XgXXF ⊆×  

we can choose Xyx ∈22,  such that ( ) ( )112 , yxFxg =  and ( ) =2yg  

( )., 11 xyF  In this way, we construct two sequences { }nx  and { }ny  in X such 

that 

( ) ( )nnn yxFxg ,1 =+   and  ( ) ( )nnn xyFyg ,1 =+  for all .0≥n  (6) 

By mathematical induction, one can prove (see Lakshmikantham [26, pp. 
4343-4344]): 

 ( ) ( )1+≤ nn xgxg   and  ( ) ( )1+≥ nn ygyg  for all .0≥n  (7) 

From (7) and (6), we have 

( )( )nn gxgxd ,11 +Φ  

( ) ( )( )( )111 ,,, −−Φ= nnnn yxFyxFd  

( ) ( ) ( )( )

( )( ) ( )( )[

( )( )] ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ≤

−

−−−−−

−−

nnn

nnnnnn

nnnnnnn

yxFgxd

yxFgxdyxFgxd

yxFgxdgygydgxgxd

,,

,,2
1,,,

,,,,,,,

1

11111

11

1  

( ) ( ) ( )( )

( )( ) ( )( )[

( )( )] ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ−

−

−−−−−

−−

nnn

nnnnnn

nnnnnnn

yxFgxd

yxFgxdyxFgxd

yxFgxdgygydgxgxd

,,

,,2
1,,,

,,,,,,,

1

11111

11

2  

( ) ( ) ( ) ( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ=

+−

−+−−

11

1111
1 ,2

1
,,,,,,,,

nn

nnnnnnnn

gxgxd

gxgxdgxgxdgygydgxgxd
 

( ) ( ) ( ) ( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ−

+−

−+−−

11

1111
2 ,2

1
,,,,,,,,

nn

nnnnnnnn

gxgxd

gxgxdgxgxdgygydgxgxd
 

( ) ( ) ( ) ( )

( )
,

,2
1

,,,,,,,,

11

1111
1 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ≤

+−

−+−−

nn

nnnnnnnn

gxgxd

gxgxdgxgxdgygydgxgxd
 (8) 
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since 1Ψ  is monotone increasing with respect to the first variable, we have 

for all ,1≥n  

 ( ) ( ),,, 11 −+ ≤ nnnn gxgxdgxgxd  (9) 

again from (7) and (6), we get 

( )( )nn gygyd ,11 +Φ  

( ) ( )( )( )111 ,,, −−Φ= nnnn xyFxyFd  

( ) ( ) ( )( )

( )( ) ( )( )[

( )( )] ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ≤

−

−−−−−

−−

nnn

nnnnnn

nnnnnnn

xyFgyd

yyFgydxyFgyd

xyFgydgxgxdgygyd

,,

,,2
1,,,

,,,,,,,

1

11111

11

1  

( ) ( ) ( )( )

( )( ) ( )( )[

( )( )] ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ−

−

−−−−−

−−

nnn

nnnnnn

nnnnnnn

xyFgyd

yyFgydxyFgyd

xyFgydgxgxdgygyd

,,

,,2
1,,,

,,,,,,,

1

11111

11

2  

( ) ( ) ( ) ( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ=

+−

−+−−

11

1111
1 ,2

1
,,,,,,,,

nn

nnnnnnnn

gygyd

gygydgygydgxgxdgygyd
 

( ) ( ) ( ) ( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ−

+−

−+−−

11

1111
2 ,2

1
,,,,,,,,

nn

nnnnnnnn

gygyd

gygydgygydgxgxdgygyd
 

( ) ( ) ( ) ( )

( )
,

,2
1

,,,,,,,,

11

1111
1 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ψ≤

+−

−+−−

nn

nnnnnnnn

gygyd

gygydgygydgxgxdgygyd
 (10) 

since 1Ψ  is monotone increasing with respect to the first variable, we have 

for all ,1≥n  

 ( ) ( ).,, 11 −+ ≤ nnnn gygydgygyd  (11) 

In view of (9) and (11), the sequences ( ){ }nn gxgxd ,1+  and ( ){ }nn gygyd ,1+  

are nonincreasing, so there exist 0≥α  and 0≥γ  such that 
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( ) α=+
∞→

nn
n

gxgxd ,lim 1   and  ( ) .,lim 1 γ=+
∞→

nn
n

gygyd  

Again, since 1Ψ  is monotone increasing with respect to the fifth variable, 

from (8), we have by triangular inequality 

( ) ( ) ( ) ( ),,2
1,2

1,2
1, 11111 +−+−+ +≤≤ nnnnnnnn gxgxdgxgxdgxgxdgxgxd  

by taking the limit, we have ( ) ,2,lim 11 α=+−
∞→

nn
n

gxgxd  similarly from (10), 

( ) .2,lim 11 γ=+−
∞→

nn
n

gygyd  

Also, taking the limit as ∞→n  in (8) and (10), respectively, and using 
the continuity of 1Ψ  and ,2Ψ  we get 

 ( ) ( ) ( )αααγαΨ−αααγαΨ≤αΦ ,,,,,,,, 211  (12) 

and 

 ( ) ( ) ( ).,,,,,,,, 211 γγγαγΨ−γγγαγΨ≤γΦ  (13) 

Assume that .γ≠α  Without loss of generality, suppose that α<γ  and 

using ( ) ( ),,,,,11 xxxxxx Ψ=Φ  so 

( ) ( ) ( )αααγαΨ−αααγαΨ≤αΦ ,,,,,,,, 211  

( ) ( ),,,,,21 αααγαΨ−αΦ≤  (14) 

which holds unless ( ) ,0,,,,2 =αααγαΨ  that is, ,γ=α  a contradiction. 

We deduce that 

 ( ) 0,lim 1 =+
∞→

nn
n

gxgxd   and  ( ) .0,lim 1 =−
∞→

nn
n

gygyd  (15) 

Now we prove that ( ){ }nxg  and ( ){ }nyg  are Cauchy sequences. 

Suppose, to the contrary, that at least one of ( ){ }nxg  or ( ){ }nyg  is not a 

Cauchy sequence. Then, by virtue of Lemma 3.1, the sequences 

( ) ( ) ( ) ( )1111 ,,,,,,, +−−+ kkkkkkkk nmnmnmnm gxgxdgxgxdgxgxdgxgxd  (16) 
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and 

 ( ) ( ) ( ) ( )1111 ,,,,,,, +−−+ kkkkkkkk nmnmnmnm gygydgygydgygydgygyd  (17) 

tend to ε when .∞→k  It follows that 

( ) ε≤+−
∞→

11,lim kk mn
k

gxgxd   and  ( ) .,lim 11 ε≤+−
∞→ kk mn

k
gygyd  (18) 

Since ( ) ( ) ,1−≥ knkm  so from (7) and (6), we have 

( ( ( ) ( ) ))knkm gxgxd ,11 +Φ  

( ( ( ( ) ( ) ) ( ( ) ( ) )))111 ,,, −−Φ= knknkmkm yxFyxFd  

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))

[ ( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))]⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ≤

−−−

−−−

−−

kmkmknknknkm

knknknkmkmkm

knkmknkm

yxFgxdyxFgxd

yxFgxdyxFgxd

gygydgxgxd

,,,,2
1

,,,,,,

,,,,

111

111

11

1  

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))

[ ( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))]

.

,,,,2
1

,,,,,,

,,,,

111

111

11

2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ−

−−−

−−−

−−

kmkmknknknkm

knknknkmkmkm

knkmknkm

yxFgxdyxFgxd

yxFgxdyxFgxd

gygydgxgxd

 

 (19) 

In addition, we have 

( ( ( ) ( ) ))11 , +Φ kmkn gygyd  

( ( ( ( ) ( ) ) ( ( ) ( ) )))kmkmknkn xyFxyFd ,,, 111 −−Φ=  

( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))

[ ( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))]⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ≤

−−−

−−−

−−

kmkmknknknkm

knknknkmkmkm

kmknkmkn

xyFgydxyFgyd

xyFgydgxgyFgyd

gxgxdgygyd

,,,,2
1

,,,,,,

,,,,

111

111

11

1  
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( ( ) ( ) ) ( ( ) ( ) )

( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))

[ ( ( ) ( ( ) ( ) )) ( ( ) ( ( ) ( ) ))]

.

,,,,2
1

,,,,,,

,,,,

111

111

11

2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ−

−−−

−−−

−−

kmkmknknknkm

knknknkmkmkm

kmknkmkn

xyFgydxyFgyd

xyFgydxyFgyd

gxgxdgygyd

 

 (20) 

Taking the limit as ∞→k  using (16) to (18) and the continuity of 1Ψ  and 

2Ψ  in (19), we obtain 

 ( ) ( ) ( ) ( ) ( ),,0,0,,,0,0,,,0,0,, 21211 εεεΨ−εΦ≤εεεΨ−εεεΨ≤εΦ   (21) 

this holds if ( ) ,0,0,0,,2 =εεεΨ  this implies that ,0=ε  a contradiction, 

since .0>ε  We deduce that ( ){ }nxg  is a Cauchy sequence. Similarly, taking 

the limit as ∞→k  in (20), we also get ( ){ }nyg  is a Cauchy sequence. Since 

( )dX ,  is a complete metric space, so there exist points x and y in X such 

that 

 ( ) xxg n
n

=
∞→

lim   and  ( ) .lim yyg n
n

=
∞→

 (22) 

From (22) and continuity of g, 

( )( ) ( )xgxgg n
n

=
∞→

lim   and  ( )( ) ( ).lim ygygg n
n

=
∞→

 (23) 

From (6) and commutativity of F and g, 

( )( ) ( )( ) ( ) ( )( )nnnnn ygxgFyxFgxgg ,,1 ==+  and 

( )( ) ( )( ) ( ) ( )( ).,,1 nnnnn xgygFxyFgygg ==+  (24) 

We now show that ( ) ( )yxFxg ,=  and ( ) ( )., xyFyg =  Consider the 

assumption (a) holds, taking the limit as ∞→n  in (24), by (22), (23) and 
continuity of F, we have 

( ) ( )( ) ( ) ( )( )nn
n

n
n

ygxgFxggxg ,limlim 1
∞→

+
∞→

==  

( ( ) ( )) ( ),,lim,lim yxFygxgF n
n

n
n

==
∞→∞→
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( ) ( )( ) ( ) ( )( )nn
n

n
n

xgygFyggyg ,limlim 1
∞→

+
∞→

==  

( ( ) ( )) ( ).,lim,lim xyFxgygF n
n

n
n

==
∞→∞→

 

Thus, we proved that ( ) ( )yxFxg ,=  and ( ) ( )., xyFyg =  

Suppose now that (b) holds, from (7), ( )nxg  is nondecreasing and 

( ) xxg n →  and ( )nyg  is nonincreasing and ( ) ,yyg n →  from (i) and (ii), 

we have ( ) xxg n ≤  and ( ) yyg n ≥  for all n. Then, by triangle inequality and 

(24), we have 

( ) ( )( ) ( ) ( )( )( ) ( )( ) ( )( )xgxggdxggyxFdxgyxFd nn ,,,,, 11 ++ +≤  

( ) ( ) ( )( )( ) ( )( ) ( )( ).,,,, 1 xgxggdygxgFyxFd nnn ++≤  

Then, from (5) we have 

( ) ( )( )( )xgyxFd ,,1Φ  

( ) ( ) ( )( )( )( ) ( )( ) ( )( )( )xgxggdygxgFyxFd nnn ,,,, 111 +Φ+Φ=  

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )(

( )( ) ( ) ( )( )( )

( ) ( ) ( )( )( ) ( ) ( )( )[ ] ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ≤

yxFxgdygxgFxgd

ygxgFxggd

yxFxgdyggygdxggxgd

nnn

nnn

nn

,,,,2
1

,,,

,,,,,,

1  

( ) ( )( ) ( ) ( )( )( ) ( ) ( )( )(

( )( ) ( ) ( )( )( )

( ) ( ) ( )( )( ) ( ) ( )( )[ ] ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

Ψ−

yxFxgdygxgFxgd

ygxgFxggd

yxFxgdyggygdxggxgd

nnn

nnn

nn

,,,,2
1

,,,

,,,,,,

2  

( )( ) ( )( )( ),,11 xgxggd n+Φ+  

taking the limit in above inequality and using the continuity of 1Ψ  and ,2Ψ  

we get 
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( ) ( )( )( )xgyxFd ,,1Φ  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )yxFxgdyxFxgdyxFxgd ,,,,,,,,,0,01Ψ≤  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ),0,,,,,,,,,0,0 12 Φ+Ψ− yxFxgdyxFxgdyxFxgd  

since ( ) ( )( ) 0,, ≥xgyxFd  and using ( ) ( ),,,,,11 xxxxxx Ψ=Φ  we get 

( ) ( )( )( )xgyxFd ,,1Φ  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )yxFxgdyxFxgdyxFxgd ,,,,,,,,,0,01Ψ≤  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )yxFxgdyxFxgdyxFxgd ,,,,,,,,,0,02Ψ−  

( ) ( )( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )
,

,,
,,,,,,,0,0

,, 21 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ψ−Φ≤

yxFxgd
yxFxgdyxFxgd

xgyxFd  

this holds if 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( ) ,0,,,,,,,,,0,02 =Ψ yxFxgdyxFxgdyxFxgd  

therefore ( ) ( )( ) ,0,, =yxFxgd  i.e., ( ) ( )., xgyxF =  Similarly, by the same 

manner, we may show that ( ) ( )., ygxyF =  

Thus, ( )yx,  is a coupled coincidence point of F and g. 

The following lemma is useful to shorten the proof of the following 
theorem. 

Lemma 3.2. Let ( )dX ,  be a metric space and let ( )( ){ }ωηω ng ,  be a 

sequence such that 

( ( )) ( )( )( ) .0,,,lim 1 =ωηωωηω −
∞→

nn
n

ggd  

Suppose that ( )( ){ }ωηω ng ,  is not a Cauchy sequence. Then there exist an 

0>ε  and two sequences of positive integers ( ){ },kn  ( ){ },km  ( ) ( )knkm >  

k≥  such that the following four sequences tend to ε: 
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( ( ( )) ( ( ))) ( ( ( )) ( ( ))),,,,,,,, 1 ωηωωηωωηωωηω +kkkk nmnm ggdggd  

( ( ( )) ( ( ))) ( ( ( )) ( ( ))).,,,,,,, 111 ωηωωηωωηωωηω +−− kkkk nmnm ggdggd  

Proof. We can obtain the proof immediately by the same manner of 
Lemma 3.1. 

The following theorem gives random version of Theorem 3.1 for a pair 
of random mappings ( ) XXXF →××Ω:  and XXg →×Ω:  under the 

set of conditions. 

Theorem 3.2. Let ( )≤,X  be a partially ordered set and suppose that 

there exists a metric d on X such that ( )dX ,  is a complete metric space. 

Suppose ( ) XXXF →××Ω:  and XXg →×Ω:  are mappings such that 

  (i) ( ) ( ).,,., ωω gF  are continuous for all ,Ω∈ω  

 (ii) ( ) ( )xgvF .,,.,  are measurable for all XXv ×∈  and ,Xx ∈  

(iii) ( ) XXXF →××Ω:  and XXg →×Ω:  are such that F has the 

mixed g-monotone property and 

( )( ) ( )( )( )( )vuFyxFd ,,,,,1 ωωΦ  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )[ ] ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωω+ωω

ωω

ωωωωωω

Ψ≤

yxFugdvuFxgd

vuFugd

yxgxgdvgygdugxgd

,,,,,,,,2
1

,,,,,

,,,,,,,,,,,,,

1  

( ) ( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )[ ]

,

,,,,,,,,2
1

,,,,,,,,,,

,,,,,,,,

2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωω+ωω

ωωωω

ωωωω

Ψ−

yxFugdvuFxgd

vuFugdyxFxgd

vgygdugxgd

 (25) 

for ,,,, Xvuyx ∈  for which ( ) ( )ugxg ,, ω≥ω  and ( ) ( ),,, vgyg ω≤ω  

where ,1Ψ  2Ψ  are generalized altering distance functions and ( ) =Φ x1  



R. A. Rashwan and H. A. Hammad 140 

( ).,,,,1 xxxxxΨ  Suppose ( ) ( ),XgXXF ⊆×  ( ) XXg →ω,  is continuous 

and commutes with F; and suppose either 

 (a) F is continuous or 

 (b) X has the following properties: 

 (I) if a nondecreasing sequence { } ,xxn →  then xxn ≤  for all n, 

(II) if a nonincreasing sequence { } ,yyn →  then nyy ≤  for all n. 

If there exist measurable mappings X→Ωξη :, 00  such that 

( ( )) ( ( ( ) ( )))ωηωξω≤ωξω 000 ,,, Fg  and 

( ( )) ( ( ( ) ( )))ωξωηω≥ωηω 000 ,,, Fg  for all ,Ω∈ω  

then there are measurable mappings X→Ωθϕ :,  such that 

( ( )) ( ) ( )( )( )ωθωϕω=ωϕω ,,, Fd  and 

( ( )) ( ) ( )( )( )ωϕωθω=ωθω ,,, Fg  for all ,Ω∈ω  

that is, F and g have a random coupled coincidence. 

Proof. Let { }X→Ωξ=Θ :  be a family of measurable mappings. 

Define a function +→×Ω RXh :  as follows: 

( ) ( )( ).,,, xgxdxh ω=ω  

Since ( )xgx ,ω→  is continuous for all ,Ω∈ω  we conclude that ( ).,ωh           

is continuous for all .Ω∈ω  Again, since ( )xg ,ω→ω  is measurable for  

all ,Xx ∈  we conclude that ( )xh .,  is measurable for all Ω∈ω  (see 

Wagner [45, p. 868]). Thus, ( )xh ,ω  is a Carathéodory function. Therefore, 

if X→Ωξ :  is a measurable mapping, then ( )( )ωξω→ω ,h  is also 

measurable (see [44]). Also, for each ,Θ∈ξ  the function X→Ωη :  

defined by ( ) ( )( )ωξω=ωη ,g  is measurable, that is, .Θ∈η  Now we are 

going to construct two sequences of measurable mappings { }nη  and { }nξ  in 
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Θ and two sequences ( )( ){ }ωξω ng ,  and ( )( ){ }ωηω ng ,  in X as follows. Let 

Θ∈ηξ 00,  be such that 

( ( )) ( ( ( ) ( )))ωηωξω≤ωξω 000 ,,, Fg   and 

( ( )) ( ( ( ) ( )))ωξωηω≥ωηω 000 ,,, Fg  

for all .Ω∈ω  Since ( ( ( ) ( ))) ( ),,,, 00 XgXF ω=∈ωηωξω  by a short              

of Filippov measurable implicit function theorem (see [4, 19, 29]), there              
is Θ∈ξ1  such that ( ( )) ( ( ( ) ( ))).,,, 001 ωηωξω=ωξω Fg  Similarly, as 

( ( ( ) ( ))) ( ),,,, 00 XgF ω∈ωξωηω  there is Θ∈η1  such that ( ( )) =ωηω 1,g  

( ( ( ) ( ))).,, 00 ωξωηωF  Thus, ( ( ( ) ( ))) ( ( ( ) ( ))),,,,,, 0000 ωξωηωωηωξω FF  

are well defined now. Again, since 

( ) ( )( )( ) ( ) ( )( )( ) ( ),,,,,,, 1111 XgFF ω∈ωξωηωωηωξω  

there are Θ∈ηξ 22,  such that 

( )( ) ( ) ( )( )( )ωηωξω=ωξω 112 ,,, Fg   and 

( )( ) ( ) ( )( )( ).,,, 112 ωξωηω=ωηω Fg  

Continuing this process, we can construct sequences ( ){ }ωξn  and ( ){ }ωηn  in 

X such that 

( )( ) ( ) ( )( )( )ωηωξω=ωξω + nnn Fg ,,, 1   and 

( )( ) ( ) ( )( )( ).,,, 1 ωξωηω=ωηω + nnn Fg  (26) 

By mathematical induction, we can prove that (see [25, p. 1251]) 

( )( ) ( )( )ωξω≤ωξω +1,, nn gg   and  ( )( ) ( )( ).,, 1 ωηω≥ωηω +nn gg  (27) 

From (25) and (27), we have 

( )( ) ( )( )( )( )ωξωωξωΦ + nn ggd ,,, 11  

( ) ( )( )( ) ( ) ( )( )( )( )( )ωηωξωωηωξωΦ= −− 111 ,,,,, nnnn FFd  
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( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( ) ( )( )( )( )

( )( ) ( ) ( )( )( )( )

( )( ) ( ) ( )( )( )( )[

( )( ) ( ) ( )( )( )( )] ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωηωξωωξω+

ωηωξωωξω

ωηωξωωξω

ωηωξωωξω

ωηωωηωωξωωξω

Ψ≤

−

−−

−−−

−−

nnn

nnn

nnn

nnn

nnnn

Fgd

Fgd

Fgd

Fgd

ggdggd

,,,,

,,,,2
1

,,,,,

,,,,,

,,,,,,,,

1

11

111

11

1  

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( ) ( )( )( )( )

( )( ) ( ) ( )( )( )( )

( )( ) ( ) ( )( )( )( )[

( )( ) ( ) ( )( )( )( )] ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωηωξωωξω+

ωηωξωωξω

ωηωξωωξω

ωηωξωωξω

ωηωωηωωξωωξω

Ψ−

−

−−

−−−

−−

nnn

nnn

nnn

nnn

nnnn

Fgd

Fgd

Fgd

Fgd

ggdggd

,,,,

,,,,2
1

,,,,,

,,,,,

,,,,,,,,

1

11

111

11

2  

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωξωωξω

ωξωωξωωξωωξω

ωηωωηωωξωωξω

Ψ=

+−

−+

−−

11

11

11

1

,,,2
1

,,,,,,,,

,,,,,,,,

nn

nnnn

nnnn

ggd

ggdggd

ggdggd

 

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωξωωξω

ωξωωξωωξωωξω

ωηωωηωωξωωξω

Ψ−

+−

−+

−−

11

11

11

2

,,,2
1

,,,,,,,,

,,,,,,,,

nn

nnnn

nnnn

ggd

ggdggd

ggdggd

 

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( )

,

,,,2
1

,,,,,,,,

,,,,,,,,

11

11

11

1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωξωωξω

ωξωωξωωξωωξω

ωηωωηωωξωωξω

Ψ≤

+−

−+

−−

nn

nnnn

nnnn

ggd

ggdggd

ggdggd

 (28) 

since 1Ψ  is monotone increasing with respect to the first variable, we have 

for all ,1≥n  

 ( )( ) ( )( )( ) ( )( ) ( )( )( ).,,,,,, 11 ωξωωξω≤ωξωωξω −+ nnnn ggdggd  (29) 
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Again from (25) and (27), we have 

( )( ) ( )( )( )( )ωηωωηωΦ + nn ggd ,,, 11  

( ) ( )( )( ) ( ) ( )( )( )( )( )ωξωηωωξωηωΦ= −− 111 ,,,,, nnnn FFd  

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( ) ( )( )( )( )

( )( ) ( ) ( )( )( )( )

( )( ) ( ) ( )( )( )( )[

( )( ) ( ) ( )( )( )( )] ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωξωηωωηω+

ωξωηωωηω

ωξωηωωηω

ωξωηωωηω

ωξωωξωωηωωηω

Ψ≤

−

−−

−−−

−−

nnn

nnn

nnn

nnn

nnnn

Fgd

Fgd

Fgd

Fgd

ggdggd

,,,,

,,,,2
1

,,,,,

,,,,,

,,,,,,,,

1

11

111

11

1  

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( ) ( )( )( )( )

( )( ) ( ) ( )( )( )( )

( )( ) ( ) ( )( )( )( )[

( )( ) ( ) ( )( )( )( )] ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωξωηωωηω+

ωξωηωωηω

ωξωηωωηω

ωξωηωωηω

ωξωωξωωηωωηω

Ψ−

−

−−

−−−

−−

nnn

nnn

nnn

nnn

nnnn

Fgd

Fgd

Fgd

Fgd

ggdggd

,,,,

,,,,2
1

,,,,,

,,,,,

,,,,,,,,

1

11

111

11

2  

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωηωωηω

ωηωωηωωηωωηω

ωξωωξωωηωωηω

Ψ=

+−

−+

−−

11

11

11

1

,,,2
1

,,,,,,,,

,,,,,,,,

nn

nnnn

nnnn

ggd

ggdggd

ggdggd

 

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωηωωηω

ωηωωηωωηωωηω

ωξωωξωωηωωηω

Ψ−

+−

−+

−−

11

11

11

2

,,,2
1

,,,,,,,,

,,,,,,,,

nn

nnnn

nnnn

ggd

ggdggd

ggdggd

 

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( )

,

,,,2
1

,,,,,,,,

,,,,,,,,

11

11

11

1

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωηωωηω

ωηωωηωωηωωηω

ωξωωξωωηωωηω

Ψ≤

+−

−+

−−

nn

nnnn

nnnn

ggd

ggdggd

ggdggd

 (30) 
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also since 1Ψ  is monotone increasing with respect to the first variable, we 

have for all ,1≥n  

( )( ) ( )( )( ) ( )( ) ( )( )( ).,,,,,, 11 ωηωωηω≤ωηωωηω −+ nnnn ggdggd  (31) 

In view of (29) and (31), the sequences ( )( ) ( )( )( ){ }ωξωωξω + nn ggd ,,, 1  

and ( )( ) ( )( )( ){ }ωηωωηω + nn ggd ,,, 1  are nonincreasing, so there exist 0≥α  

and 0≥γ  such that 

( )( ) ( )( )( ) α=ωξωωξω +
∞→

nn
n

ggd ,,,lim 1  

and 

( )( ) ( )( )( ) .,,,lim 1 γ=ωηωωηω +
∞→

nn
n

ggd  

Again, since 1Ψ  is monotone increasing with respect to the fifth variable, 

from (28), we have by triangular inequality 

( )( ) ( )( )( )ωξωωξω + nn ggd ,,, 1  

( )( ) ( )( )( )ωξωωξω≤ +− 11 ,,,2
1

nn ggd  

( )( ) ( )( )( ) ( )( ) ( )( )( ),,,,2
1,,,2

1
11 ωξωωξω+ωξωωξω≤ +− nnnn ggdggd  

so in the limit, we have 

( )( ) ( )( )( ) ,2,,,lim 11 α=ωξωωξω +−
∞→

nn
n

ggd  

similarly, from (30), 

( )( ) ( )( )( ) .2,,,lim 11 γ=ωηωωηω +−
∞→

nn
n

ggd  

Passing on the limit ∞→n  in (28) and (30), respectively and using the 
continuity of 1Ψ  and ,2Ψ  we get the same equations (12) and (13). Assume 

that .γ≠α  Without loss of generality, suppose that α<γ  and using 
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( ) ( ),,,,,11 xxxxxx Ψ=Φ  so we get equation (14) which holds unless 

( ) ,0,,,,2 =αααγαΨ  that is, ,γ=α  a contradiction. 

We deduce that 

( )( ) ( )( )( ) 0,,,lim 1 =ωξωωξω +
∞→

nn
n

ggd   and 

( )( ) ( )( )( ) .0,,,lim 1 =ωηωωηω +
∞→

nn
n

ggd  (32) 

Now, we prove that ( )( ){ }ωξω ng ,  and ( )( ){ }ωηω +1, ng  are Cauchy 

sequences. Suppose, to the contrary, that at least one of ( )( ){ }ωξω ng ,  or 

( )( ){ }ωηω +1, ng  is not a Cauchy sequence. Then, by virtue of Lemma 3.2, 

the sequences 

( ( ( )) ( ( ))) ( ( ( )) ( ( ))),,,,,,,, 1 ωξωωξωωξωωξω +kkkk nmnm ggdggd  

( ( ( )) ( ( ))) ( ( ( )) ( ( )))ωξωωξωωξωωξω +−− 111 ,,,,,,, kkkk nmnm ggdggd  (33) 

and 

( ( ( )) ( ( ))) ( ( ( )) ( ( ))),,,,,,,, 1 ωηωωηωωηωωηω +kkkk nmnm ggdggd  

( ( ( )) ( ( ))) ( ( ( )) ( ( )))ωηωωηωωηωωηω +−− 111 ,,,,,,, kkkk nmnm ggdggd  (34) 

tend to ε when ,∞→k  it follows that 

( ( ( )) ( ( ))) ε≤ωξωωξω −
∞→ kk nm

k
ggd ,,,lim 1   and 

( ( ( )) ( ( ))) .,,,lim 11 ε≤ωηωωηω +−
∞→ kk mn

k
ggd  (35) 

Since ( ) ( ) ,1−≥ knkm  so from (27), we have by (25), 

( ( ( ( ) ( )) ( ( )( ))))ωξωωξωΦ + knkm ggd ,,, 11  

( ( ( ( ( )( ) ( )( ))) ( ( ( ) ( ) ( ) ( )))))ωηωξωωηωξωΦ= −− 111 ,,,,, kmkmkmkm FFd  
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( ( ( )( )) ( ( ) ( )))

( ( ( )( )) ( ( )( )))

( ( ( )( )) ( ( ( )( ) ( )( ))))

( ( ( ) ( )) ( ( ( ) ( ) ( ) ( ))))

[ ( ( ( )( )) ( ( ( ) ( ) ( ) ( ))))

( ( ( ) ( )) ( ( ( )( ) ( )( ))))]⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωηωξωωξω+

ωηωξωωξω

ωηωξωωξω

ωηωξωωξω

ωηωωξω

ωξωωξω

Ψ≤

−

−−

−−−

−

kmkmkn

knknkm

knknkn

kmkmkm

knkm

knkm

Fgd

Fgd

Fgd

Fgd

ggd

ggd

,,,,

,,,,2
1

,,,,,

,,,,,

,,,,

,,,,

1

11

111

1

1  

( ( ( )( )) ( ( ) ( )))

( ( ( )( )) ( ( )( )))

( ( ( )( )) ( ( ( )( ) ( )( ))))

( ( ( ) ( )) ( ( ( ) ( ) ( ) ( ))))

[ ( ( ( )( )) ( ( ( ) ( ) ( ) ( ))))

( ( ( ) ( )) ( ( ( )( ) ( )( ))))]

.

,,,,

,,,,2
1

,,,,,

,,,,,

,,,,

,,,,

1

11

111

1

2

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωηωξωωξω+

ωηωξωωξω

ωηωξωωξω

ωηωξωωξω

ωηωωηω

ωξωωξω

Ψ−

−

−−

−−−

−

kmkmkn

knknkm

knknkn

kmkmkm

knkm

knkm

Fgd

Fgd

Fgd

Fgd

ggd

ggd

 (36) 

In addition, we have 

( ( ( ( )( )) ( ( ) ( ))))ωηωωηωΦ +11 ,,, kmkn ggd  

( ( ( ( ( ) ( ) ( ) ( ))) ( ( ( )( ) ( )( )))))ωξωηωωξωηωΦ= −− kmkmkmkm FFd ,,,,, 111  

( ( ( ) ( )) ( ( )( )))

( ( ( ) ( )) ( ( )( )))

( ( ( )( )) ( ( ( )( ) ( )( ))))

( ( ( ) ( )) ( ( ( ) ( ) ( ) ( ))))

[ ( ( ( )( )) ( ( ( ) ( ) ( ) ( ))))

( ( ( ) ( )) ( ( ( )( ) ( )( ))))]⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωξωηωωηω+

ωξωηωωηω

ωξωηωωηω

ωξωηωωηω

ωξωωξω

ωηωωηω

Ψ≤

−

−−

−−−

−

−

kmkmkn

knknkm

knknkn

kmkmkm

kmkn

kmkn

Fgd

Fgd

Fgd

Fgd

ggd

ggd

,,,,

,,,,2
1

,,,,,

,,,,,

,,,,

,,,,

1

11

111

1

1

1  
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( ( ( ) ( )) ( ( )( )))

( ( ( ) ( )) ( ( )( )))

( ( ( )( )) ( ( ( )( ) ( )( ))))

( ( ( ) ( )) ( ( ( ) ( ) ( ) ( ))))

[ ( ( ( )( )) ( ( ( ) ( ) ( ) ( ))))

( ( ( ) ( )) ( ( ( )( ) ( )( ))))]

.

,,,,

,,,,2
1

,,,,,

,,,,,

,,,,

,,,,

1

11

111

1

1

2

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωξωηωωηω+

ωξωηωωηω

ωξωηωωηω

ωξωηωωηω

ωξωωξω

ωηωωηω

Ψ−

−

−−

−−−

−

−

kmkmkn

knknkm

knknkn

kmkmkm

kmkn

kmkn

Fgd

Fgd

Fgd

Fgd

ggd

ggd

 (37) 

Taking the limit as ∞→k  using (26), (33), (34), (35) and the continuity of 

1Ψ  and 2Ψ  in (36) and (37), we get the same equation (21), this holds if 

( ) ,0,0,0,,2 =εεεΨ  this implies that ,0=ε  a contradiction since .0>ε  

We deduce that ( )( ){ }ωξω ng ,  is a Cauchy sequence. Similarly, taking the 

limit as ∞→k  in (37), we also get ( )( ){ }ωηω +1, ng  is a Cauchy sequence. 

Since ( )dX ,  is a complete metric space and ( ) ,XXg =×ω  so there exist 

Θ∈θζ 00,  such that 

( )( ) ( ( ))ωζω=ωξω
∞→

0,,lim gg n
n

  and  ( )( ) ( ( )),,,lim 0 ωθω=ωηω
∞→

gg n
n

 

since ( ( ))ωζω 0,g  and ( ( ))ωθω 0,g  are measurable, the functions ( )ωζ  and 

( )ωθ  defined by ( ) ( ( ))ωζω=ωζ 0,g  and ( ) ( ( )),, 0 ωθω=ωθ g  are measurable. 

Thus, 

 ( )( ) ( )ωζ=ωξω
∞→

n
n

g ,lim   and  ( )( ) ( ).,lim ωθ=ωηω
∞→

n
n

g  (38) 

From (38) and continuity of g, 

( )( )( ) ( )( )ωζω=ωξωω
∞→

,,,lim ggg n
n

  and 

( )( )( ) ( )( ).,,,lim ωθω=ωηωω
∞→

ggg n
n

 (39) 

From (26) and commutativity of F and g, 

( )( )( ) ( ) ( )( )( )( )ωηωξωω=ωξωω + nnn Fggg ,,,,, 1  

( )( ) ( )( )( )( )ωηωωξωω= nn ggF ,,,,,  (40) 
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and 

( )( )( ) ( ) ( )( )( )( )ωξωηωω=ωηωω + nnn Fggg ,,,,, 1  

( )( ) ( )( )( )( ).,,,, ωξωωηωω= nn ggF  (41) 

We now show that if assumption (a) or (b) holds, then ( )( ) =ωζω,g  

( ) ( )( )( )ωθωζω ,,F  and ( )( ) ( ) ( )( )( ).,,, ωζωθω=ωθω Fg  

Suppose at first that the assumption (a) holds. Then from (38), (40), (41) 
and continuity of F, we have 

( )( )ωζω,g  

( )( )( ) ( )( ) ( )( )( )( )ωηωωξωω=ωξωω=
∞→

+
∞→

nn
n

n
n

ggFgg ,,,,lim,,lim 1  

( ( ( )( ) ( )( ))) ( ) ( )( ),,,lim,,lim, ωθωζ=ωηωωξωω=
∞→∞→

FggF n
n

n
n

 

( )( )ωθω,g  

( )( )( ) ( )( ) ( )( )( )ωξωωηωω=ωηωω=
∞→

+
∞→

nn
n

n
n

ggFgg ,,,,lim,,lim 1  

( ( ( )( ) ( )( ))) ( ) ( )( ).,,lim,,lim, ωζωθ=ωξωωηωω=
∞→∞→

FggF n
n

n
n

 

From above equalities, we deduce that ( ) ( )( ) XX ×∈ωθωζ ,  is a random 

coupled coincidence of F and g. 

Suppose (b) holds. From (27), ( )( )ωξω ng ,  is nondecreasing and 

( )( ) ( )( )ωζω→ωξω ,, gg n  and ( )( )ωηω ng ,  is nonincreasing and 

( )( ) ( )( ),,, ωθω→ωηω gg n  from (I) and (II), we have ( )( ) ≤ωξω ng ,  

( )( )ωζω,g  and ( )( ) ( )( )ωθω≥ωηω ,, gg n  for all n. Hence, by using similar 

proof as in Theorem 3.1, we have 

( ) ( )( )( ) ( )( ).,,, ωζω=ωθωζω gF  

Similarly, by the same manner, one can show that 

( ) ( )( )( ) ( )( ).,,, ωθω=ωζωθω gF  

Thus, ( ) ( )( ) XX ×∈ωθωζ ,  is a random coupled coincidence of F and g. 
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From Theorem 3.2, we have the following coupled random fixed point 
which is a random analogue Theorem 11 of [30]. 

Theorem 3.3. Let ( )≤,X  be a partially ordered set and suppose that 

there exists a metric d on X such that ( )dX ,  is a complete metric space. 

Suppose ( ) XXXF →××Ω:  has the mixed monotone property and such 

that 

  (i) ( ).,ωF  is continuous for all ,Ω∈ω  

 (ii) ( )vF .,  is measurable for all ,XXv ×∈  

(iii) 

( )( ) ( )( )( )( )vuFyxFd ,,,,,1 ωωΦ  

( ) ( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )[ ] ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ω+ω

ωω
Ψ≤

yxFudvuFxd

vuFudyxFxdvyduxd

,,,,,,2
1

,,,,,,,,,,,,
1  

( ) ( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )[ ]
,

,,,,,,2
1

,,,,,,,,,,,,
2 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

ω+ω

ωω
Ψ−

yxFudvuFxd

vuFudyxFxdvyduxd
 (42) 

for ,,,, Xvuyx ∈  for which ux ≥  and ,vy ≤  where ,1Ψ  2Ψ  are 

generalized altering distance functions and ( ) ( ).,,,,11 xxxxxx Ψ=Φ  Also, 

suppose 

 (a) F is continuous or 

 (b) X has the following properties: 

 (i) if a nondecreasing sequence { } ,xxn →  then xxn ≤  for all n, 

(ii) if a nonincreasing sequence { } ,yyn →  then nyy ≤  for all n. 

If there exist measurable mappings X→Ωξη :0,0  such that 

( ) ( ( ( ) ( )))ωηωξω≤ωξ 000 ,,F   and 

( ) ( ( ( ) ( )))ωξωηω≥ωη 000 ,,F  for all ,Ω∈ω  
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then there are measurable mappings X→Ωθζ :,  such that 

( ) ( )( )( ) ( )ωζ=ωθωζω ,,F   and  ( ) ( ) ( )( )( )ωζωθω=ωθ ,,F  for all ,Ω∈ω  

that is, F has a random coupled fixed point. 

Proof. Taking XXg →×Ω:  by ( ) xxg =ω,  for all Ω∈ω  in 

Theorem 3.2, we obtain Theorem 3.3. 

Now, a number of random coupled fixed point results may be obtained 
by assuming different forms for the functions 1Ψ  and .2Ψ  Here, we drive 

the following corollaries from Theorem 3.2 and Theorem 3.3. 

Corollary 3.1. Let ( )≤,X  be a partially ordered set and suppose that 

there exists a metric d on X such that ( )dX ,  is a complete metric space. 

Suppose ( ) XXXF →××Ω:  and XXg →×Ω:  are mappings such that 

  (i) ( ) ( ).,,., ωω gF  are continuous for all ,Ω∈ω  

 (ii) ( ) ( )xgvF .,,.,  are measurable for all XXv ×∈  and ,Xx ∈  

(iii) ( ) XXXF →××Ω:  and XXg →×Ω:  are such that F has 

the mixed g-monotone property and 

( )( ) ( )( )( )vuFyxFd ,,,,, ωω  

( ) ( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )[ ]

,

,,,,,,,,2
1

,,,,,,,,

,,,,,,

5
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωω+ωω+

ωω+ωω+

ωω+ωω

≤

yxFugdvuFxgd

vuFugdyxFxgd

ugygdugxgd
k  (43) 

for ,,,, Xvuyx ∈  [ ),1,0∈k  for which ( ) ( )ugxg ,, ω≥ω  and ( ) ≤ω yg ,  

( )., vg ω  Suppose ( ) ( ),XgXXF ⊆×  ( ) XXg →ω,  is continuous and 

commutes with F and suppose either 

 (a) F is continuous or 

 (b) X has the following properties: 
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 (I) if a nondecreasing sequence { } ,xxn →  then xxn ≤  for all n, 

(II) if a nonincreasing sequence { } ,yyn →  then nyy ≤  for all n. 

If there exist measurable mappings X→Ωξη :, 00  such that 

( ( )) ( ( ( ) ( )))ωηωξω≤ωξω 000 ,,, Fg   and 

( ( )) ( ( ( ) ( )))ωξωηω≥ωηω 000 ,,, Fg  for all ,Ω∈ω  

then there are measurable mappings X→Ωθϕ :,  such that 

( )( ) ( ) ( )( )( )ωθωϕω=ωϕω ,,, Fg   and 

( )( ) ( ) ( )( )( )ωϕωθω=ωθω ,,, Fg  for all ,Ω∈ω  

that is, F and g have a random coupled coincidence. 

Proof. Letting 

( ) [ ],5
1,,,, 54321543211 tttttttttt ++++=Ψ  

( ) [ ]54321543212 5
1,,,, tttttkttttt ++++−=Ψ  

and ( ) tt =Φ1  for all Ω∈t  in Theorem 3.2, we obtain the proof. 

Corollary 3.2. Let ( )≤,X  be a partially ordered set and suppose that 

there exists a metric d on X such that ( )dX ,  is a complete metric space. Let 

( ) XXXF →××Ω:  be a mapping has the mixed monotone property and 

such that 

  (i) ( ).,ωF  is continuous for all ,Ω∈ω  

 (ii) ( )vF .,  is measurable for all ,XXv ×∈  

(iii) assume there exists [ )1,0∈k  such that 

( )( ) ( )( )( )vuFyxFd ,,,,, ωω  

( ) ( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )[ ]
,

,,,,,,2
1

,,,,,,,,

5 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ω+ω+

ω+ω++
≤

yxFudvuFxd

vuFudyxFxdvyduxdk  
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for ,,,, Xvuyx ∈  for which ux ≥  and vy ≤  suppose either F is 

continuous or X has the following properties: 

 (i) if a nondecreasing sequence { } ,xxn →  then xxn ≤  for all n, 

(ii) if a nonincreasing sequence { } ,yyn →  then nyy ≤  for all n. 

If there exist measurable mappings X→Ωξη :, 00  such that 

( ) ( ( ( ) ( )))ωηωξω≤ωξ 000 ,F   and 

( ) ( ( ( ) ( )))ωξωηω≥ωη 000 ,,F  for all ,Ω∈ω  

then there are measurable mappings X→Ωθζ :,  such that 

( ) ( )( )( ) ( )ωζ=ωθωζω ,F   and  ( ) ( ) ( )( )( )ωζωθω=ωθ ,F  for all ,Ω∈ω  

that is, F has a random coupled fixed point, that is, ( ) ( )( ) XX ×∈ωθωζ ,  

such that ( ) ( )( )( ) ( )ωζ=ωθωζω ,,F  and ( ) ( ) ( )( )( )ωζωθω=ωθ ,,F  for all 

.Ω∈ω  

Proof. Letting Ig =  (I is the identity mapping) for all Ω∈ω  in 

Corollary 3.1, we obtain the proof. 

Corollary 3.3. Let ( )≤,X  be a partially ordered set and suppose that 

there exists a metric d on X such that ( )dX ,  is a complete metric space. Let 

( ) XXXF →××Ω:  be a mapping has the mixed monotone property and 

such that 

  (i) ( ).,ωF  is continuous for all ,Ω∈ω  

 (ii) ( )vF .,  is measurable for all ,XXv ×∈  

(iii) assume there exists [ )1,0∈k  such that 

( )( ) ( )( )( )vuFyxFd ,,,,, ωω  

( ) ( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )[ ]
,

,,,,,,2
1

,,,,,,,,,,,,
max ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

ω+ω

ωω
≤

yxFudvuFxd

vuFudyxFxdvyduxd
k  
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for ,,,, Xvuyx ∈  for which ux ≥  and vy ≤  suppose either F is continuous 

or X has the following properties: 

 (i) if a nondecreasing sequence { } ,xxn →  then xxn ≤  for all n, 

(ii) if a nonincreasing sequence { } ,yyn →  then nyy ≤  for all n. 

If there exist measurable mappings X→Ωξη :, 00  such that 

( ) ( ( ( ) ( )))ωηωξω≤ωξ 000 ,F   and 

( ) ( ( ( ) ( )))ωξωηω≥ωη 000 ,,F  for all ,Ω∈ω  

then there are measurable mappings X→Ωθζ :,  such that 

( ) ( )( )( ) ( )ωζ=ωθωζω ,F   and  ( ) ( ) ( )( )( )ωζωθω=ωθ ,,F  for all ,Ω∈ω  

that is, F has a random coupled fixed point, that is, ( ) ( )( ) XX ×∈ωθωζ ,  

such that ( ) ( )( )( ) ( )ωζ=ωθωζω ,,F  and ( ) ( ) ( )( )( )ωζωθω=ωθ ,,F  for all 

.Ω∈ω  

Proof. One can obtain the proof by taking ( ) =Ψ 543211 ,,,, ttttt  

[ ],,,,,max 54321 ttttt  ( ) ( ) ( )543211543212 ,,,,1,,,, tttttkttttt Ψ−=Ψ  and 

( ) tt =Φ1  for all Ω∈t  in Theorem 3.3. 

Example 3.1. Let [ )∞+= ,0X  with the usual metric under ( ) =yxd ,  

yx −  and ordering order ≤. Let [ ]1,0=Ω  and let Σ be the sigma 

measurable algebra subset of [ ].1,0  Define XXg →×Ω:  and ×Ω:F  

( ) XXX →×  as follows: 

( ) ( ) xxg 21, ω−=ω   and  ( )
( ) ( )

⎪⎩

⎪
⎨
⎧

<

≥−ω−
=ω

.if,0

,4if,415
1

,,
2

yx

yxyx
yxF  

We will check that the contraction (43) of Corollary 3.1 is satisfied for 
all Xvuyx ∈,,,  satisfying ( ) ( )ugxg ,, ω≥ω  and ( ) ( )vgyg ,, ω≤ω  for 
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all .Ω∈ω  By taking ,6
5=k  we divide the proof into the following four 

cases: 

(a) If yx 4≥  and ,4vu ≥  here we get ( ) ( ) ( )yxyxF 45
1,,

2
−

ω−
=ω  

and ( ) ( ) ( ),45
1,,

2
vuvuF −

ω−
=ω  

( )( ) ( )( )( )vuFyxFd ,,,,, ωω  

( ) 5
4

5
41 2 vuyx −−−ω−=  

( ) ( )
⎟
⎠
⎞⎜

⎝
⎛ −+−ω−= 5

4
51 2 yvux  

( ) ( ) ( )
⎟
⎠
⎞⎜

⎝
⎛ −+−+−+−+−ω−= 30

3
30

16
30661 2 yvyvuxyvux  

( ) ⎟
⎠
⎞⎜

⎝
⎛ +++−+−ω−≤ 30

3
30
4

30661 2 vuxyvux  since uv 4
1≤  

( ) ⎟
⎠
⎞⎜

⎝
⎛ +++−+−ω−≤ 30

4
30
4

30
5

661 2 vuxyvux  

( )
⎟
⎠
⎞⎜

⎝
⎛ ++++−+−ω−= 30

44
5

44
6

1 2 vuyxyvux  since xy 4
1≤  

( ) ( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ωω+ωω+

ωω+ωω
≤

vuFugdyxFxgd

vgygdugxgdk
,,,,,,,,

,,,,,,
5  

( ) ( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )[ ]

.

,,,,,,,,2
1

,,,,,,,,

,,,,,,

5
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωω+ωω+

ωω+ωω+

ωω+ωω

≤

yxFugdvuFxgd

vuFugdyxFxgd

vgygdugxgd
k  
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(b) If yx 4≥  and ,4vu <  here we get ( ) ( ) ( )yxyxF 45
1,,

2
−

ω−
=ω  

and ( ) ,0,, =ω vuF  

( )( ) ( )( )( )vuFyxFd ,,,,, ωω  

( ) ( ) 515
41 22 xyx ω−≤−ω−=  

( ) ⎟
⎠
⎞⎜

⎝
⎛ ++−ω−= 30661 2 xuux  

( ) ⎟
⎠
⎞⎜

⎝
⎛ ++−ω−≤ 30

5
661 2 xuux  

( )
⎟
⎠
⎞⎜

⎝
⎛ +++−

ω−
≤ 5

44
6

1 2 yxuux  since xy 4
1≤  

( ) ( )( ) ( ) ( )( )( )

( ) ( )( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ωω+

ωω+ωω
≤

yxFxgd

vuFugdugxgdk
,,,,

,,,,,,,
5  

( ) ( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )[ ]

.

,,,,,,,,2
1

,,,,,,,,

,,,,,,

5
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωω+ωω+

ωω+ωω+

ωω+ωω

≤

yxFugdvuFxgd

vuFugdyxFxgd

vgygdugxgd
k  

(c) If yx 4<  and ,4vu ≥  here we get ( ) 0,, =ω yxF  and ( )vuF ,,ω  

( ) ( ),45
1 2

vu −ω−=  

( )( ) ( )( )( )vuFyxFd ,,,,, ωω  

( ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +ω−=ω−≤−ω−= 3061515

41 222 uuuvu  

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ ++ω−≤⎟

⎠
⎞⎜

⎝
⎛ ++ω−≤ 30

5
66130661 22 uuxuux  
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( )
⎟
⎠
⎞⎜

⎝
⎛ +++ω−≤ 5

44
6

1 2 vuux  since vu 4
1≤  

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ωω+

ωω+ωω
≤

vuFugd

yxFugdyxFxgdk
,,,,

,,,,,,,,
5  

( ) ( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )[ ]

.

,,,,,,,,2
1

,,,,,,,,

,,,,,,

5
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

ωω+ωω+

ωω+ωω+

ωω+ωω

≤

yxFugdvuFxgd

vuFugdyxFxgd

vgygdugxgd
k  

(d) If yx 4<  and ,4vu <  here we get ( )( ) 0,, =ω yxF  and 

( )( ) ,0,, =ω vuF  it is trivial. Then from four cases, we have the hypotheses 

of Corollary 3.1 are verified. Thus, ( ) XX ×∈0,0  is a random coupled 

coincidence and a random coupled fixed point of F and g. 

As an application, it is easy to state a corollary of Theorem 3.3 involving 
a contraction of integral type. 

Corollary 3.4. Let F satisfy the conditions of Theorem 3.3 except that 
condition (42) be replaced by the following: there exists a positive Lebesgue 

integrable function ϕ on +R  such that ( )∫
ε

>ωϕ
0

0, dtt  for each 0>ε  such 

that 

( )
( )( ) ( )( )( )( )

∫
ωωΦ

ωϕ
vuFyxFd

dtt
,,,,,

0

1 ,  

( )

( ) ( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )[ ]∫ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ω+ω

ωω
Ψ

ωϕ≤ yxFudvuFxd

vuFudyxFxdvyduxd

dtt,,,,,,2
1

,,,,,,,,,,,,

0

1 ,  

( )
( ) ( ) ( )( )( ) ( )( )( )

( )( )( ) ( )( )( )[ ]∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ω+ω

ωω
Ψ

ωϕ− yxFudvuFxd

vuFudyxFxdvyduxd

dtt,,,,,,2
1

,,,,,,,,,,,,

0

2 .,  

Then F has a coupled random fixed point. 
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