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Abstract

In this paper, we obtain random coupled coincidence point theorems
in an ordered metric space X for a pair of random mappings F : Q x

(XxX)—> X and g:Qx X — X under certain contractive conditions

which are commutative under generalized atering distance function
in five variables. Random coupled fixed point results (as corollaries)
under certain contractive conditions will be excerpted from our
theorems. We also support our result by an example.
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1. Introduction

The theory of random mappings is a substantial branch of probabilistic
analysis which plays pivotal role in many applied mathematics. Random
fixed point theorems for contraction mappings on various spaces have been
established by several authors [13, 14, 16-22, 27, 33, 41, 44, 45].

In 1994, the notion of partial metric spaces was initiated by Matthews
[28]. He extended the Banach contraction principle from metric spaces to
partial metric spaces.

Definition 1.1. A partial metric on a nonempty set X is a function
p: X x X — R" suchthat forall x,y, ze X:

(p) x=y < p(x x) = px y)=py, y),

(P2) P(X ) < p(x Y),

(p3) P y) = p(Y, %),

(Ps) P(X )+ P(z 2) < p(X, 2) + p(Z ).

A partial metric space is a pair (X, p) such that X is a nonempty set and

p is a partial metric on X.

One of the recent trends, initiated by Ran and Reurings [37], in fixed
point theory, is to study the existence and uniqueness of certain operators in
the context of partially ordered metric spaces (see for example, [2, 1, 4, 5, 15,
26, 31, 32]).

In 1984, Khan et al. [24] introduced the notion of an altering distance
function for one variable as the following:

Definition 1.2. A function @ : [0, +0) — [0, +) is called altering
distance function if and only if

(1) @ is continuous,
(2) ¢ is nondecreasing,

3) ¢(t)=0 <t =0.
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Several authors worked in this notion and established nice results for

applied it to obtaining fixed point results in metric spaces.

In recent years, Choudhury and Dutta [8] generalized this notion to a
two-variable function and it was also extended to three-variable function by
Choudhury [9] as the following:

Definition 1.3. A function ¢ : [0, +0) x [0, +0) x [0, +0) — [0, +o0) is
said to be a generalized altering distance function if and only if

(1) @ is continuous,

(2) ¢ is nondecreasing in all the three variables,

B)o(x y,2)=0 x=y=2=0.

In 2008, Rao et al. [36] introduced the altering distance function in five
variables to generalize the results of Choudhury [9] as follows:

Definition 1.4. A function

@ : [0, +0) x [0, +00) x [0, +00) x [0, +0) x [0, +0) —> [0, +0)

is said to be a generalized altering distance function if and only if

(1) @ is continuous,

(2) ¢ is nondecreasing in all the five variables,

B)ox,y,zwW,t) =0 x=y=z=w=t =0.

In 2006, the concept of coupled fixed point was presented by Bhaskar
and Lakshmikantham [5]. They studied some nice coupled fixed point
theorems, after three years, Lakshmikantham and Ciri¢ [26] introduced the
notion of a coupled coincidence point and coupled fixed point of mappings.
Many theorems under this title were recognized, see [10-12, 23, 39, 40, 42,
43, 3, 34, 35].

Recall that if (X, <) is a partially ordered set and F : X — X is such
that for X, y € X, x <y implies F(x) < F(y), then a mapping F is said to

be nondecreasing. Similarly, a nonincreasing mapping is defined.
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The same authors [5] introduced the following notions of a mixed

monotone mapping as:

Definition 1.5. Let (X, <) be a partially ordered set and F : X x
X — X. The mapping F is said to has the mixed monotone property if F is

monotone nondecreasing in X and is monotone nonincreasing in Y, that is, for
any X, y € X,

X, X € X, X <X = F(x,y)<F(x,Y)
and
Vi, Y2 € X, Y < Yy = F(X’ yl) 2 F(X’ yZ)

Definition 1.6 [5]. An element (X, y) € X x X is called a coupled fixed
point of the mapping F : X x X — X if

F(x, y)=x and F(y, X)=y.
The concept of the mixed monotone property is generalized in [26] as:

Definition 1.7. Let (X, <) be a partially ordered set and F : X x
X —> X, g: X — X. The mapping F is said to has the mixed g-monotone

property if F is monotone g-nondecreasing in X and is monotone

g-nonincreasing in Y, that is, for any X, y € X,

X, % € X, g(x)<9(X%)= F(x,y)<F(X,Yy)
and
Vi Y2 € X, g(y1) £9(Y2) = F(X y1) > F(X, ¥2).

Clearly, if g is the identity mapping, then Definition 1.7 reduces to
Definition 1.5.

Definition 1.8 [26]. An element (X, y) € X x X is called a coupled

coincidence point of the mappings F : X x X > X and g: X — X if

F(x, y)=9(x) and F(y, xX) = 9(y).
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Definition 1.9 [1]. Let X be a nonempty set, F: X x X — X and
g: X = X. Then F and g are commutative if for all X, y € X,
9(F(x, y)) = F(g9(x), g(y))

2. Preliminaries

Throughout this paper, (Q, £) denotes a measurable space consisting of
a set Q and sigma algebra T of subsets of Q, (X, d) stands for a complete

metric space.
Definition 2.1 [6]. A mapping f : Q — X is said to be measurable if

f~1(B) € T for every Borel subset B of X.

Definition 2.2 [7]. A mapping T : Q x X — X is a random operator if
for each fixed t € X, the mapping T(,, t): Q — X is measurable.

Definition 2.3 [6]. A measurable mapping & : Q — X is a random fixed
point of a random operator T : Qx X — X if T(t, &(t)) = &(t) for each
teQ

Definition 2.4 [25]. A measurable mapping & :Q — X is a random
coincidence of the random operators T : Qx X — X and g: Qx X > X
if T(t, &(t)) = g(t, &(t)) foreach t € Q.

Definition 2.5 [25]. Let (X, d) be a separable metric space, (2, X) be a
measurable space and T : Q x (X x X) - X, g:Qx X — X. Then T and

g are commutative if
T((D’ (g((,l), X): g((’): y))) = g((D, T(Wa (Xa y)))

forall ®we Q, X, y € X.

3. Main Results

The following lemma is used in the sequel:
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Lemma 3.1. Let (X, d) beametric space and let {g(y,,)} be a sequence
in X such that
lim d(g(Yn), 9(¥n-1)) = 0. (1
n—o0

Suppose that {g(y,)} is not a Cauchy sequence. Then there exist an
¢ > 0 and two sequences of positive integers {n(k)}, {m(k)}, m(k) > n(k)

> k such that the following four sequences tend to «:
d(9(Ym,)> 9(¥n,))s  d(9(Ym,)> 9(Yn+1))5
d(9(Ym-1)> 9(¥n ) d(9(Ym -1)> 9(Yry +1))-

Proof. Suppose that {g(yy)} is not a Cauchy sequence. Then there exist
¢ > 0 and two sequences of positive integers {n(k)}, {m(k)} for each integer
k such that

d(9(Yn, )s 9(Ym)) 2 &, ()

let m be the least integer exceeding N, with m(k) > n(k) > k, satisfying
(2). It follows that
d(9(Yn ). 9(Ym-1)) <&, ©)

from the triangle inequality, we can write

d(9(¥n,)> 9(¥m,)) < d(9(¥n,)> 9(Ym 1)) + d(I(Ym -1)> 9(Ym,))-
|d(9(Yn+1)s 9(Ym ) = d(9(Yn, )> 9(Ym )| < d(9(Yny +1)> 9(Yn )5
1d(9(Yn )> 9(Ym 1)) = d(9(¥n, )> 9(Ym D] < d(9(Ym-1)> 9(Ym )

1d(9(Yn, +1)> 9(Yme-1)) — d(9(Yn+1)s I(Ym )| = d(9(Ym-1)> 9(Ym, ))- (4)
Taking the limit as k — oo in terms of (2)-(4) and using (1), we have

€= kli—r:};o d(g(Ynk)» g(ym( ) = kli_lgo d(g(YnkH)» g(ym( )
= Jim d(9(¥n+1)- 9(¥m-1)) = lim d(g(yn, ). 9(Ym,-1))-

This completes the proof of Lemma 3.1.
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Remark 3.1. If we put g = I, where | is the identity mapping in Lemma
3.1, we have Lemma 10 of [30].

The following theorem is a generalized version Theorem 11 of [30].

Theorem 3.1. Let (X, <) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d) is a complete metric space.
Suppose F: X x X — X and g: X — X are such that F has the mixed
g-monotone property and

@,(d(F(x y), F(u, V)
. d(gx, gu), d(gy. gv). d(gx, F(x, y)), d(gu, F(u, v)),
" S ldox F(u, v)) + digu, F(x y)]

d(gx, gu), d(gy, gv), d(gx, F(x, y)), d(gu, F(u, v)), .
"2 (o, F(u. ) + dlau. F(x, y)] - ®

for x, y,u,ve X, for which g(x)> g(u) and g(y) < g(v), where ¥,
¥, are generalized altering distance functions and @;(x) = W (X, X, X, X, X).
Suppose F(X x X) < g(X), where g is continuous and commutes with F
and suppose either

(a) F is continuous or

(b) X has the following properties:

(i) if a nondecreasing sequence x, — X, then x, < x for all n,
(ii) if a nonincreasing sequence y, — Y, then y <y, for all n.

If there exist Xy, Yo € X such that g(xy) < F(X, Yo) and g(yp) =
F(Yo, %), thenthereexists (X, y) € X suchthat F(x, y) = x and F(y, X)
= .

That is, F and g have a coupled coincidence.

Proof. Let Xy, Yo € X be such that g(Xy) < F(xy, Yp) and 9g(yp) >
F(Yp, %) Since F(X x X) < g(X), we can choose X, ¥; € X such that
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9(x1) = F (%o, Yo) and g(¥1) = F(¥o, Xo)- Again, from F(X x X) < g(X),
we can choose X, Y, € X such that g(X)=F(X, y;) and g(y,)=
F(y;, X ). In this way, we construct two sequences {X,} and {y,} in X such

that

9(Xn+1) = F(Xn, Yn) and 9(Yn41) = F(Yn, Xy) foralln>0.  (6)

By mathematical induction, one can prove (see Lakshmikantham [26, pp.
4343-4344)):

9(%n) < 9(Xns1) and g(Yn) = 9(Yn4r) forall n> 0. (7)
From (7) and (6), we have
@1 (d(Pn+15 9*n))
= @ (d(F(Xn, Yn), F(Xn-1> ¥n-1))
d(9%n, IXn-1), d(GYn, WYn-1), d(IX, F(Xn, Yn))s
<) d(9%n-1> F(Xn—1> Yn-1)); %[d(gxn, F(Xn-1> Yn-1))
+d(Pn-1, F(X, Yn))]
d(9%n, Pn-1), d(QYn, Wn-1)> A(Kn, F(Xn, Yn)),
= W[ d(@¥n-1, F(Xn-15 Yn-1)); %[d(gxn, FOt-15 Yn-1))
+d(9%n -1, F(Xn, Yn))]
[d(gxn, Pn-1)> A(QYn, Wn-1)> A(Pn, PKny1), A(PXn_1, gxn),J
= 1

1
5 d(9%n-1> O¥n+1)

{d(gxna OXn-1)> d(9Yn, QYn-1), Ad(Gxn, Pny1), A(GXn-1, an),]
- 12

1
5 d(9%n-1> P*n+1)

1

d(gxna an—l)a d(gyna gyn—l)a d(gxn: ng‘H—l): d(gxn—la an)a
¥ ,» (8)
Ed(gxn—la Pns1)
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since V| is monotone increasing with respect to the first variable, we have

forall n > 1,
d(9ns1, Pn) < d(Pn, Pn-1), )
again from (7) and (6), we get
@ (d(QYn+1> GYn))
= @1(d(F(Yn, 1) F(Yn-1, %-1)))
d(9Yn, QYn-1); d(Pn, GXq-1), d(QYn, F(Yn, Xn)).
< )| (@1, F(¥nots Xn-1): 5 [0, F(¥nts Ya)
+d(gyn-1, F(Yn, Xn))]
d(Q¥n, OYn-1)> A(IXn, 9Xq-1), d(GYn, F(Yn, Xn)),
~ | d(@Yn-1» F V-1 %n-1): 5 [4(DYns F¥no1» Ya1)
+d(@Yn-1, F(Yn, Xn))]
d(9Yn, Yn-1), d(I%, IXn-1), d(QYn, Y1), A(Yn-1. Yn),
B 1[%d(gyn1, Wn+1) J

d(9Yn> Yn-1)> (9%, Pn-1), A(QYn> Yn+1)> A(QYn-1> GYn)-
- 1|1
5 d(Yn-1> Wn+1)

1

d(9Yn> Yn-1)> (X, Pn-1), A(QYn> QYn+1)> A(QYn-1> GYn)-
<Y , (10)
zd(QYn—l’ Wni1)

since V| is monotone increasing with respect to the first variable, we have

forall n > 1,
d(9Yn+1» 9Yn) < d(9Yn> QYn-1)- (1)

In view of (9) and (11), the sequences {d(g%n1> 9%,)} and {d(QYni1> GYn)}

are nonincreasing, so there exist o > 0 and y > 0 such that
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lim d(9Xy41> 9%) = o and lim d(Qyn,;, OYn) = 7-
n—o0 nN—co

Again, since V| is monotone increasing with respect to the fifth variable,

from (8), we have by triangular inequality

1 1 1
d(QXnr1s Pn) < 5 APt Pnt) < 5 (Pt ) + 5 A(Pns Pnr),
by taking the limit, we have lim d(gX,_1, @%n41) = 20, similarly from (10),
n—oo
lim d(gyn-1, Qyns1) = 2.
n—oo

Also, taking the limit as N — o in (8) and (10), respectively, and using
the continuity of ¥; and ¥,, we get
O)(a) < W(a, v, a, 0, o) = Pa(a, v, a, a, ) (12)
and

O(y) <y, o, v, 7. 7) — Pav, o, v, v, ). (13)

Assume that o = y. Without loss of generality, suppose that y < o and

using @(x) = ¥(X, X, X, X, X), so
®¢(a) < ¥ (o, v, a, a, a) — Pr(a, v, o, o, )
< O(a) - Yy(a, v, a, a, a), (14)

which holds unless W,(a, v, a, a, o) = 0, thatis, a = y, a contradiction.

We deduce that
lim d(g%y4+1, 9%,) =0 and lim d(gyn, 9yn-1) = 0. (15)
n—oo n—oo

Now we prove that {g(x,)} and {g(y,)} are Cauchy sequences.
Suppose, to the contrary, that at least one of {g(X,)} or {g(y,)} is not a

Cauchy sequence. Then, by virtue of Lemma 3.1, the sequences

d(Pm, > Py )s (P Py 11)> A(PKmy 15 Py ) APy, 15 Py 1) (16)
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and
d(9Ym, > Wn )> A(WYm, > W +1)> A(WYm -1 Wny )> AWYm, 1> Wn+1) A7)
tend to € when k — oo. It follows that
kh—r)llo d(gxnk—ls gxm(+1) <e and kh—r)llo d(gynk—l’ ger‘k+l) <e  (18)
Since m(k) > n(k) — 1, so from (7) and (6), we have
D1(d(Pm(k)+1: Pén(k)))
= O (d(F(Xm(k)> Ymk))> FXngk)-1> Yn(k)-1))
d(Pm(k)> Pn()-1)> A(WYm(k)> Wn(k)-1)-

< W] d(GKm(k)> F(Xm(k)> Ym(k)))> d(Xnii)-1> FXngk)-15 Yn(k)=1))>
1
5 [d(@Xm()> F(ngi)-15 Yn(i)-1)) + d(Pnio)-1> F Xim(ie)> Ym(ic)))]

d(PXm(k)> Pn(k)-1)> A(Ym(k)> WYn(k)-1)s
=W, | d(Pm(k)> F(Xm(k)> Ym(k)))> d(Pn(k)-1 FXn(k)-15 Yn(k)-1))>
%[d(gxm(k), F(Xn(k)=1> Yn(k)-1)) + d(PXnk)-1> F Xm(k)> Ym(k)))]
(19)

In addition, we have
D1 (d(9Yn(k)> WYrm(k)+1))
= @1 (d(F(Yn(k)-1> Xn(k)-1)> F(Ym(k)> Xm(k))))
d(9Yn(k)-1> WYm(k))> A(Pn(k)1> Pm(k))s

< d(gym(k)a F(9Ym(k)s ng(k)))a d(QYn(k)—l: F(Yn(k)—la Xn(k)-1))>
1
5 Ld(@Ym()> F(Yn(k)-1 Xn(io)-1)) + d(@Yn(i)-1- F(Ym(k)> Xm(k))]
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d(9Yn(k)-1> BYm(k))> A(Pn(k)-1> Pm(k))
=] d(QYm(k)> F(Ym(k)> Xm(k)))> A(Yn(i)-1> F(Yn(k)-15 Xn(k)-1))s
1
7 1d(9Ym(k)> F(Yn(k)-1> Xn(k)-1)) + d(@Yn(e)-1> F(Ym(k)» Xm()))]
(20)
Taking the limit as kK — oo using (16) to (18) and the continuity of ¥; and
¥, in (19), we obtain
D(e) < Y(e, 6 0,0, e)—Wse, & 0,0, 8) <Dy(e) — Ws(s, & 0, 0, €), (21)
this holds if W,(g, €, 0, 0, €) = 0, this implies that &€ = 0, a contradiction,
since & > 0. We deduce that {g(x)} is a Cauchy sequence. Similarly, taking
the limit as k — oo in (20), we also get {g(y,,)} is a Cauchy sequence. Since

(X, d) is a complete metric space, so there exist points X and y in X such

that

lim g(X,) =X and lim g(yp) =Y. (22)
n—o

n—oo

From (22) and continuity of g,

nhfio 9(9(xy)) = 9(x) and nhfio 9(9(yn)) = 9(y). (23)

From (6) and commutativity of F and g,
9(9(Xh+1)) = 9(F (%> Yn)) = F(9(Xn), 9(¥n)) and
9(9(¥n+1)) = 9(F(Yn. X)) = F(9(¥n). 90%n)). 24)

We now show that g(Xx) = F(x, y) and g(y)= F(y, x). Consider the
assumption (a) holds, taking the limit as N — o in (24), by (22), (23) and
continuity of F, we have

9(x) = nlglgo 9(9(Xn41)) = nliggo F(9(xn), 9(yn))

= F(lim g(x,), lim g(y,)) = F(x V),
N—oo N—oo
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a(y) = nhfio 9(9(Yn+1)) = nhfio F(9(Yn), 9(Xn))
= F(nhj‘lo a(yn), nligo 9(xn)) = F(y, X).

Thus, we proved that g(x) = F(x, y) and g(y) = F(y, X).

Suppose now that (b) holds, from (7), g(X,) is nondecreasing and
gd(x,) > x and g(y,) is nonincreasing and g(y,) — Y, from (i) and (ii),
we have g(X,) < x and g(y,,) > y for all n. Then, by triangle inequality and
(24), we have

d(F(x, y), g(x)) < d(F(x, ¥), 9(9(Xn41))) + d(9(9(Xns1)), (X))
< d(F(x y), F(9(Xn), 9(¥n))) + d(9(9(Xq11)), 9(X)).
Then, from (5) we have
@ (d(F(x, y). 9(x)))

= ®y(d(F(x, y), F(g0%0), 9(yn))) + @1(d(9(9(Xn+1)): 9(X)))

d(g(x), 9(g(xn)), d(a(y), 9(a(yn))), d(g(x)F(x, y)),
< W] d(9(9(%n)), F(9(Xn), 9(¥Yn))
%[d(g(X), F(9(Xh), 9(¥n)) +d(9(xn), F(x y))]

d(g(x), 9(9(xy)), d(g(y), 9(a(yn))), d(a(x)F(x, y)),
— W, | d(9(g(xn)), F(9(xn), 9(Yn)))s
214(909. F(90%n). gyn)) + d(g0x). F(x. Y))

+ @1 (d(9(9(Xn+1))> 9(X))),

taking the limit in above inequality and using the continuity of ¥} and ¥,

we get
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@ (d(F(x y), 9(x)))
< %1(0, 0, d(g(x), F(x ¥)), d(9(x), F(x, y)), d(g(x), F(x. ¥)))
—¥,(0,0, d(g(x). F(x. ¥)), d(g(x), F(x, y)), d(9(x), F(x, ¥)))+ ®;(0),
since d(F(X, y), 9(x)) = 0 and using @;(X) = ¥;(X, X, X, X, X), we get
@ (d(F(x ¥), 9(x))
< ¥1(0, 0, d(g(x), F(x, y)), d(g(x), F(x y)), d(g(x), F(x, ¥)))
= ¥2(0, 0, d(g(x), F(x, ), d(g(x). F(x ¥)), d(g(x), F(x, y)))

0, 0, d(g(x), F(x, y)), d(g(x), F(x, y)),j

< @y (d(F(x, y), g(X)))—‘Pz(d(g(x) F(x, Y))

this holds if

(0, 0, d(g(x), F(x, ¥)), d(g(x), F(x, ¥)), d(g(x), F(x, y))) =0,
therefore d(g(x), F(x, ¥)) =0, i.e., F(X, y) = g(x). Similarly, by the same
manner, we may show that F(y, x) = g(y).

Thus, (X, y) is a coupled coincidence point of F and g.

The following lemma is useful to shorten the proof of the following
theorem.

Lemma 3.2. Let (X, d) be a metric space and let {g(®, n,(®))} bea

seguence such that
lim d(g(0. na(@). 9(0. M-1(@)) = 0
Suppose that {g(®, nn(®))} is not a Cauchy sequence. Then there exist an

¢ > 0 and two sequences of positive integers {n(k)}, {m(k)}, m(k) > n(k)

> k such that the following four sequencestend to &:
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d(9(®, N (@), g(@, np (@), d(g(®, Nm (©)), g(©, Nn1(0)),

d(g((&), nm(—l(@))a g((D, T]nk ((D))), d(g((D, nl’T‘k—l((D))a g((Da nnk+1(0))))-
Proof. We can obtain the proof immediately by the same manner of

Lemma 3.1.

The following theorem gives random version of Theorem 3.1 for a pair

of random mappings F : QO x (X x X) - X and g : Q x X — X under the

set of conditions.

Theorem 3.2. Let (X, <) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d) is a complete metric space.
Suppose F: QO x (X xX)— X and g: Qx X — X are mappings such that

(i) F(®,.), g(o, .) are continuous for all o € Q,
(i) F(., v), 9(., x) aremeasurablefor all ve X x X and x e X,

(iii) F: Qx(XxX)—> X and g: Qx X — X aresuch that F hasthe

mixed g-monaotone property and

ch(d(F((D’ (Xa y))> F((Da (U, V))))

d(9(w, ), g(w, u)), d(g(o, y), 9(w, v)), d(g(e, ), g(e, (X, ¥))),
< lIIl d(g((D, U), F((Da (U, V))):
Sld(g(o, %), Flo, (u, v)) + d(g(o, u), F(o, (x y)]

d(9(m, ), 9(w, u)), d(g(®, y), 9(w, v)),
—¥,| d(g(®, X), F(o, (%, y))), d(g(o, u), F(o, (u, V), |, (25)
%[d(g(co, x), F(o, (u, v))) + d(g(w, u), F(o, (X, ¥)))]

for x, y,u,ve X, for which g(w, Xx) > g(w, u) and g(o, y) < g(o, v),

where W¥;, ¥, are generalized altering distance functions and ®;(x) =
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Wi(X X, X, X, X). Suppose F(X x X) < g(X), g(w, X)— X iscontinuous
and commutes with F; and suppose either

(a) F is continuous or
(b) X hasthe following properties:

() if a nondecreasing sequence {x,} — X, then x, < x for all n,
(I1) if a nonincreasing sequence {y,} — Y, then y <y, for all n.

If there exist measurable mappings ng, & : Q — X such that

g(w, §o(®)) < F(w, (§o(), no(w))) and

9(@, no() = F(o, (ne(w), &y(w))) foral o e Q,

then there are measurable mappings o, 6 : Q — X such that

d(o, ¢(0)) = F(o, (¢(w), 6(w))) and
g(o, 6(w)) = F(o, (0(w), ¢(w))) foral o e Q,
that is, F and g have a random coupled coincidence.

Proof. Let ® ={£:Q — X} be a family of measurable mappings.

Define a function h: Q x X — R" as follows:
h(o, x) = d(x, g(o, X)).

Since X — g(w, X) is continuous for all ® € Q, we conclude that h(w, .)
is continuous for all ® € Q. Again, since ® — g(®, X) is measurable for
all x e X, we conclude that h(., X) is measurable for all ® e Q (see
Wagner [45, p. 868]). Thus, h(w, X) is a Carathéodory function. Therefore,
if £:Q — X is a measurable mapping, then ® — h(w, §(®)) is also
measurable (see [44]). Also, for each & e ®, the function 1:Q — X
defined by n(w) = g(o, &(®)) is measurable, that is, 1 € ®. Now we are

going to construct two sequences of measurable mappings {n,} and {§,} in



On Random Coincidence Point and Random Coupled Fixed Point ... 141

© and two sequences {g(®, &n(®))} and {g(w, np(®))} in X as follows. Let
€o> Mo € © be such that

9(o, &y(w)) < F(w, (§o(w), no(w))) and

9(@, ng(®)) = F(o, (ng(®), &o()))

for all ® e Q. Since F(o, (§9(®), no(®))) € X = g(o, X), by a short

of Filippov measurable implicit function theorem (see [4, 19, 29]), there
is & €® such that g(o, §(0)) = F(o, (§9(®), ng(®))). Similarly, as

F(o, (ng(m), &(m))) € g(o, X), there is n; € © such that g(w, n(®)) =
F((D’ (nO((D), <t:~()(('0))) Thus, F(OJ, (Z’,O((D), 110(03))): F((Da (n()(m)a E:O((D)))a

are well defined now. Again, since
F(w, (&(0), m(0))), Flo, (o), &(e)) € glo, X),
there are &5, M, € © such that
9(w, &(»)) = F(w, (&(0), ni(@))) and
g(w, n2(0)) = Fo, (n(0), & ().

Continuing this process, we can construct sequences {£,(®)} and {n,(o)} in

X such that
9(®, &ny1(@)) = F(o, (En(w), np())) and

9(®, Nny1(0) = F(0, (Mn(@), &n(@))). (26)

By mathematical induction, we can prove that (see [25, p. 1251])

9(w. En(®)) < g(®, Enyi(@)) and g(w, np(w)) = g(w, Npy(0).  (27)

From (25) and (27), we have

@ (d(g(w, Ent1(@)), (e, En())))
= @ (d(F (o, (En(®), Mn(@)), F(w, (En-1(@), nn_1(®)))))
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d(g(w, En(w)), g(o, &x-1(®))), d(g(e, Np(@)), g(e, Np_1(@))),
d(g(w, &x(®)), F(o, (Ex(w), np(@))),

< W[ d(g(e, &n-1(@)), Flo, (En-1(®), Np-1(©)))),

%[d(g(w, En(®)), F(o, (En-1(@), Mp-1(®))))

+d(g(w, &n_1(®)), F(o, (En(®), np(@))))]

d(9(0, En(®), 90, En1(0), d((0, My(©)), 90, Ny-1(0),
d(9(©, En(®), F(©, (n(©), na(©@),

d(9(0, En-1(0)), F(©, (En-1(0), 1n-1 (@),

2 [d(9(0, & (0)), F(©, (&n-1(0), nn-1 (@)

+d(9(0, En-1(0)), F(O, (Ea(0), 1n(0)]

!
-

d(9(®, &n(®)), 9(®, En-1(0)), d(g(®, (), 9o, T101(®),
= IP1 d(g(oa, ‘:n(@))s 9(0), §n+1((’))))5 d(g(m: é;n—l(m))’ g((,O, in(ﬂ))))a
2d(9(0, &n1(), 9(®, Enai(©)

d(g((D, &n((’)))’ g((ﬂ, Ezn—l((’)))), d(g((D, nn(m))’ g((D, nn—l((D)))a
— 9| d(9(0, &n(©), 90, £ (), A(G(®, En-1(0)), Gl Enl®),
2d(9(0, &n1(), 9o, Enei(0)

d(9(®, £0(0), (0 &n-1(0)), d(9(0. 1(©)), g0 My (@),
<9 d(g(®, £n(0), (0 & (@), d(9(0, En-1(0), (o En(), |, (28)
28(9(0, En1(0), 90 £ ()

since V| is monotone increasing with respect to the first variable, we have

forall n > 1,

d(9(®, Ens1(®)), g(®; En(@))) < d(g(®, En(@)), g(, En-1(®))). (29)
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Again from (25) and (27), we have
@ (d(g(, Nn41(@)), 9(o, Np(w))))
= ©1(d(F (0, (Mn(), En(©))), F(o, Mp-1(®), &r-1(0))))

d(9(®, 110(0)), 90, 1n-1(0)), d(g(0, En(0)), 90, Eq1(0),
d(9(0. (@), F (o, (1n(®), £n(0)).
< | d(9(0, Mn-1(0)), F(©, (11g-1(0), Eq1(0),
21400, 1y(©)). F(o, (Nn-1(0). &n_1(®))
+d(9(0, 1n-1(0)), F(0, (14(0), &n(@))]

d(9(0, 1n(®)), 9o, Mn-1(), (90, En(0)), 90, En1(0),
d(9(0, Mn(®)), F(®, (15(0), &n()),
d(g(o, Np-1(®)), F(o, Mp_1(®), &r-1(0)))),
2 [4(0(0, 1n(®)), F(®, (1q-1(0), &n_1(@)
+d(9(0, 1n-1()), F(©, (13(0), &(©)]

!
F

d(g(e Mn(®), 9(0, n-1 (), A9, &n(©)), 90, &n-i(0).
= )| d(9(0, (), IO, N1 (@), d(GO, Nn-1(0), (o, (),
2d(9(0, 5 1(0), 90, M1 ()

d(g(®, (), 9, Mn_1(©)), d(go, Ea(0), 9(0, &ni(0),
- 95| d(g(®, (), 90, T1ge1()), A9, Nn-1(0)), 90, (@),
2d(9(0, Ma1(©0), 9O, Tper(©))

d(g((D, nn(@))a g(O), MNn-1 ((D)))’ d(g(m: ‘:n(@))a g(O), an—l(m)))’
< \Pl d(g((D, ﬂn(@)), g(O), ﬂn+1(@)))a d(g(O), nn—l((ﬁ)), g((D, nn(@))), > (30)
2800, M-1(0)), 90, Tn. ()
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also since ¥} is monotone increasing with respect to the first variable, we

have for all n > 1,

d(g((D, nl’H-l((D))’ g((D, nn((ﬂ))) < d(g((ﬂ, nn((’)))’ g((D, nn—l(w)))- (31)

In view of (29) and (31), the sequences {d(g(®, &n41(®)), (o, Eq(®)))}
and {d(g(®, Np41(®)), 9(®, np(®)))} are nonincreasing, so there exist a. > 0

and y > 0 such that
Jim d(g(@. &n+1(0)). 9@, En(0)) = a

and

Jim - d(g(®, Mn41(©), G(e, Mn(®))) = 7.

Again, since ¥; is monotone increasing with respect to the fifth variable,

from (28), we have by triangular inequality

d(9(®, &n+1(®)), 9(®; En()))

s%«m@ammwxm@ammm»

< 2 d(9(0, £01(0), 9(0, &(0)) + 5 d(9(0, En(0)), 90, Enea(0),
so in the limit, we have

lim d(g(@, £-1(0)). 96, En(®) = 2.
similarly, from (30),

lim d(g(®, 1q-1(@)). 90, M. (@) = 21

Passing on the limit n — o« in (28) and (30), respectively and using the
continuity of ¥} and ¥,, we get the same equations (12) and (13). Assume

that o # y. Without loss of generality, suppose that y < o and using
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Dq(x) = V(% X, X, X, X), so we get equation (14) which holds unless

W, (a, v, a, a, o) = 0, thatis, a = v, a contradiction.

We deduce that

Jim d(g(, &n41(0)), 9l &n(®)) =0 and

lim d(g(: Np41(®), G(e, Mn(@)) = 0. (32)

Now, we prove that {g(w, En(w))} and {g(®, Nps(@)); are Cauchy
sequences. Suppose, to the contrary, that at least one of {g(w, &n(w))} or

{d(®, Nps1(®))} is not a Cauchy sequence. Then, by virtue of Lemma 3.2,

the sequences

d(9(e, Em (@), 9(o, &, (), d(g(w, Em, (@), g(o, En11(0)),

d(9(e, Em-1(®), 9(@, &n (0))), d(g(®, Em —1(@)), (0, &y +1(0)) (33)
and

d(g(e, nm, (©)), g(@, N, (0))), d(g(@, Nm (@), 9o, N, +1(0)),

d(9(, Nm-1()), 9(, np (@), d(g(o, Nm,-1(0)), (o, N 1(©)) (34)
tend to £ when k —> oo, it follows that

kh_l;r; d(g((’)’ E;er—l((D))’ g((D, (t:'nk (OJ))) <e& and
Jim d(g(e: i —1(@). g(o: N 1(@)) < & (35)

Since m(k) > n(k) — 1, so from (27), we have by (25),
(Dl(d(g(m’ va(k)-i—l(('o))’ g((ﬂ, &n(k)(m))))

= ch(d(F((Dﬁ (&m(k)(m)a nm(k)(('o)))a F(OJ, ((t:'m(k)—l(m)a nm(k)—l((ﬂ)))))
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d(9(e, Emik) (@), 9(o, Enk)-1(®))),

d(9(®, Emik)(©)), 9(®, Np(k)(®))),

d(9(e, Emik)(©)), Flo, (Emi) (@), Nmk)(®)))),

d(9(e, Enk)-1(®)), F(@, (Enk)-1(@), Mn(k)-1()))),

%[d(g(w, Em(k) (@), F(@, Engk)-1(®), Mn(k)-1(@))))
+d(9(®, En(k)-1(®)), F(@, Emii) (@), Ny (@))))]

d(9(w, Emk)(®)), 9(, Engk)-1(®))),
d(9(e, Nm(k)(®)), (e, Nn(k)(@))),
d(g(e, Emk)(®@)), F(o, Emk)(®), Nmk)(®)))),

%[d(g(w, Em(k)(®)), F(@, (Engk)-1(®), Nnk)-1(®))))
+d(9(, En(k)-1(®)), F(@, (Emk) (@), Mm(c)(@))))]

In addition, we have

@1 (d(g(@: nn(k)(@)), 9@, Mm(ic)+1(@))))

| d(g(o. &ngo1 (@), Fo. Engoi(®). nagoi @), |

(36)

= ®y(d(F (@, Mmk)-1(®), Emk)-1(®))), Flo, Mmi)(@), Emk)(©))))

d(g(@, Nn(k)-1(®)), 9(@, Nmk)(@))),

d(9(®, Enk)-1(®)), (o, Emi)(@))),

d(g(@, Nm(k)(®)), F(o, Mmk)(@), Emk)(®))),

d(g(e, Nn(k)-1(®)), F(@, (Mnk)-1(®), Enk)-1(@))),

%[d(g(w, Nm(k)(®)), F(o, Mnk)-1(®), Engk)-1(®))))
+ d(9(e, Nn(k)-1(®)), Flo, Mm)(@), Emk)(©))))]
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d(9(@, Mn(k)-1(©)), (@, Nm(k)(®))),
d(g((D, <t:~I‘l(k)—l(m))’ g((D, E;m(k)(@))),
d(g(w, o)), F(o, 0), Emk)(®)))),
v, (9(e, M) (@), F(®, (Mm(k)(©), Emi)(©)))) -
d(9(, Mnk)-1(®)), Flo, (Mn)-1(©), Enk)-1(©)))),
%[d(g(m, Mm(k) (@), F(@, Mn(k)-1(©), En)-1(®))))

+ d(g(e, Npk)-1(®)), Fo, Mm(k)(©@), Emik)(@))]

Taking the limit as k — oo using (26), (33), (34), (35) and the continuity of
Y, and ¥, in (36) and (37), we get the same equation (21), this holds if

W, (g, ¢ 0, 0, €) = 0, this implies that &€ = 0, a contradiction since & > 0.
We deduce that {g(®, &,(w))} is a Cauchy sequence. Similarly, taking the
limit as k — oo in (37), we also get {g(®, Np41(®))} is a Cauchy sequence.
Since (X, d) is a complete metric space and g(w x X) = X, so there exist

Co» 0p € O such that
lim g0, &(©)) = g(o, £o(0) and lin g(o, 19(®) = g(o, 0()),

since g(o, {p(w)) and g(w, Op(w)) are measurable, the functions {(®) and
0(w) defined by {(w) = g(o, {y(w)) and B(®) = g(®, 6y(®)), are measurable.
Thus,

lim g(o, &n(@)) = (@) and  lim g(o, nn(w)) = 6(w).  (38)
From (38) and continuity of g,
lim g(o, g(e, &n(®)) = g(w, G(w)) and
lim g(o. glo. 1n(0)) = g(o. 8(0). (39)

From (26) and commutativity of F and g,

9(, 9(, &ns1(®)) = 9o, F(o, (En(®), nn(®))))
= F(OJ, (g’ (0‘)7 E;n((’)))’ g((D, nn((’))))) (40)
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and
9(®, 9(o, Np41(@)) = g(o, F(o, Ma(0), &n(®)))
= F(o, (9(e, np()), g(w, &n(w)))). (41)
We now show that if assumption (a) or (b) holds, then g(w, {(o)) =
F(o, (C(0), 6(w))) and g(o, 8(w)) = F(o, (8(w), &(w))).

Suppose at first that the assumption (a) holds. Then from (38), (40), (41)
and continuity of F, we have

0. £(0)
= lim g(o, g(0. £11(®)) = lim F(o. (g(o. £(0). 0. Ma(0))

= F(o. (lim g(0. £(®). lm g(®, M(®) = FE). o).

9(o, 6(w))

= nh—l;llo g((’): g((,l), nn+1(03))) = nh_rﬁo F((Da g((D, nn((’)))a g((D, &n(m)))
= Flo. (lim g(0.y(@)). i g(o. £(0)) = F(O(0). C(o)),

From above equalities, we deduce that ({(w), O(w)) € X x X is a random
coupled coincidence of F and g.

Suppose (b) holds. From (27), g(w, &(®)) is nondecreasing and
g(o, En(®) » g(o, {(w)) and g(o®, np(w)) is nonincreasing and
g(o, np(®)) = g(o, 8(®)), from (I) and (1), we have g(o, {q(0)) <
g(o, {(®)) and g(o, N,(®)) > g(o, 6(w)) for all n. Hence, by using similar
proof as in Theorem 3.1, we have

F(o, (C(0), 6(w)) = g(w, {(w)).
Similarly, by the same manner, one can show that
F(w, (8(w), {(w))) = g(w, 6(w)).
Thus, ({(®), 6(w)) € X x X is a random coupled coincidence of F and g.
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From Theorem 3.2, we have the following coupled random fixed point
which is a random analogue Theorem 11 of [30].

Theorem 3.3. Let (X, <) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d) is a complete metric space.

Suppose F : Q x (X x X) — X has the mixed monotone property and such
that

(i) F(o, .) iscontinuousfor all ® € Q,
(ii) F(., v) ismeasurablefor all ve X x X,
(iii)
@ (d(F(o, (%, Y)), F(o, (u, v)))
) ‘P{?(X’ u), d(y, v), d(x, F(w, (x y))), d(u, F(e, (u, V))),}
F[d(x, F(o, (U, v))) + d(u, F(w, (x, )]

d(x, u), d(y, v), d(x, F(w, (%, ¥))), d(u, F(e, (u, v))),

-l 1 , (42)
E[d(x’ F((D’ (U, V))) + d(U, F((D’ (X’ y)))]

for x,y,u,ve X, for which x>u and y<v, where ¥,, ¥, are

generalized altering distance functions and ®;(x) = ¥;(Xx, X, X, X, X). Also,
suppose

(a) F is continuous or
(b) X has the following properties:

(i) if a nondecreasing sequence {x,} — X, then x, < x for all n,

(i) if a nonincreasing sequence {y,,} — Y, then y <y, for all n.

If there exist measurable mappings ng, &, : Q — X such that
&o(@) < F(w, (§g(w), no(w))) and

Mo(®) = F(o, (ng(w), Eg(w))) for all © € O,
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then there are measurable mappings ¢, 0 : Q — X such that
F(o, (C(0), 8(w))) = () and 6(w) = F(o, (6(w), {(w))) for all o € Q,
that is, F has a random coupled fixed point.

Proof. Taking g:Qx X — X by g(o, X)=Xx for all ®e Q in

Theorem 3.2, we obtain Theorem 3.3.

Now, a number of random coupled fixed point results may be obtained

by assuming different forms for the functions ¥; and ¥,. Here, we drive

the following corollaries from Theorem 3.2 and Theorem 3.3.

Corollary 3.1. Let (X, <) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d) is a complete metric space.
Suppose F: Qx(XxX)— X and g: Qx X — X are mappings such that

(i) F(®,.), g(o, .) arecontinuous for all ® € Q,
(ii) F(., v), g(., x) aremeasurablefor all ve X x X and x € X,

(iii) F:Qx(XxX)— X and g:Qx X — X are such that F has

the mixed g-monotone property and

d(F (o, (x, ¥)), F(o, (U, v)))

d(g(®, x), g(w, u)) + d(g(w, y), 9(w, u))
+d(g(o, x), F(o, (%, ) +d(g(o, u), F(o, (u,v))) |, (43)
+ %[d(g(w, x), F(o, (u, v))) + d(g(w, u), F(o, (X, ¥)))]

<

wn|x

for x, y,u,ve X, kel0,1), for which g(w, X) > g(w, u) and g(o, y) <
g(o, v). Suppose F(X x X) < g(X), g(w, X) —> X is continuous and

commutes with F and suppose either
(a) F is continuous or

(b) X hasthe following properties:
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(D) if a nondecreasing sequence {X,} — X, then x,, < x for all n,
(I1) if a nonincreasing sequence {y,,} — Y, then y <y, for all n.

If there exist measurable mappings ng, &, : @ — X such that

g(w, Eg(®)) < F(o, (§(w), no(w))) and
g(, ng(®) = F(o, (ne(w), &(w))) foral o e Q,
then there are measurable mappings o, 6 : Q — X such that
(o, ¢(w)) = F(o, (¢(), 6(w))) and
g(o, 6(w)) = F(o, (8(w), ¢(w))) for al o € Q,
that is, F and g have a random coupled coincidence.

Proof. Letting
1
q”l(tl, t2, t3, t4, tS) = g[tl + t2 + t3 + t4 + tS]’

1-k
W) (t, b, t3, ty, t5) = T[tl +ty + 1ty + 1y + 5]

and @(t) =t forall t € Q in Theorem 3.2, we obtain the proof.
Corollary 3.2. Let (X, <) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d) isa complete metric space. Let

F:Qx (X x X)— X beamapping has the mixed monotone property and
such that

(i) F(o, .) iscontinuousfor all ® € Q,
(ii) F(., v) ismeasurablefor all ve X x X,

(iii) assume there exists k < [0, 1) such that

d(F(o, (% ¥)), F(o, (u, v)))
K d(x, u) + d(y, v) + d(x, F(o, (X, ¥))) + d(u, F(o, (u, v)))

" 5|42 [d(x Flo. (U v) + d(u, Flo, (x y)]

b
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for x, y,u,ve X, for which x>u and y<v suppose either F is
continuous or X has the following properties:

(i) if a nondecreasing sequence {x,} — X, then x, < x for all n,
(i) if a nonincreasing sequence {y,,} — Y, then y <y, for all n.

If there exist measurable mappings n, &, : & — X such that

&o(®) < F(o(§p(w), ny())) and

Mo(®) = F(o, (ne(w), Eg(w))) for all © € O,

then there are measurable mappings ¢, 6 : Q — X such that
F(o(¢(w), 8(w))) = {(0) and 6(w) = F(o(8(w), {(w))) for all ® € Q,

that is, F has a random coupled fixed point, that is, ({(®), 8(®)) € X x X
such that F(w, ({(»), 6(w))) = {(®) and 6(ow) = F(o, (6(o), {(w®))) for all

o e Q.

Proof. Letting g =1 (I is the identity mapping) for all ® € Q in
Corollary 3.1, we obtain the proof.

Corollary 3.3. Let (X, <) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d) isa complete metric space. Let

F:Qx (X x X)— X beamapping has the mixed monotone property and
such that

(i) F(w, .) iscontinuousfor all o € Q,
(ii) F(., v) ismeasurablefor all ve X x X,

(iii) assume there exists k € [0, 1) such that
d(F (o, (%, ¥)), F(o, (U, v))

d(x, u), d(y, v), d(x, F(a, (x, ¥))), d(u, F(o, (u, v))),
21d(x Flo, (u, ) + d(u. Flo, (x )] ’

< kmax
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for x, y,u,ve X, for which x>u and y <v suppose €either F is continuous
or X hasthe following properties:

(i) if a nondecreasing sequence {x,} — X, then x,, < x for all n,

(i) if a nonincreasing sequence {y,} — Y, then y <y, for all n.

If there exist measurable mappings ng, &, : & — X such that
&o(@) < F((gg(w), no(w))) and

Np(®) > F(o, (Mo(0), &(w))) for all o € Q,

then there are measurable mappings ¢, 6 : Q — X such that
F(o(l(0), 6(w))) = (o) and 6(w) = F(o, (6(w), {(w))) forall o e Q,

that is, F has a random coupled fixed point, that is, ({(®), 6(®)) € X x X
such that F(w, ({(w), 8(w))) = {(0) and 6(w) = F(o, (6(o), {(w))) for all
o e Q.

Proof. One can obtain the proof by taking W(t;, ty, t3, t4, t5) =

max[t, ty, t3, t4, ts], Po(ty, ty, t3, tg, t5) = (1 - k)P (4, t, t3, 14, ts) and
®(t) =t forall t € Q in Theorem 3.3.

Example 3.1. Let X = [0, +o0) with the usual metric under d(x, y) =
| x—y| and ordering order <. Let Q =[0,1] and let £ be the sigma
measurable algebra subset of [0, 1]. Define g: Qx X — X and F : Qx
(X x X) = X as follows:

1 ) 3 .
g(, X) = (1-»?)X and F(w, X, y) = 5(1 %) (x=4y), if x> 4y,

0, if x<vy.

We will check that the contraction (43) of Corollary 3.1 is satisfied for
all X, y,u,ve X satisfying g(o, X) > g(w, u) and g(o, y) < g(o, v) for
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all ® € Q. By taking K = %, we divide the proof into the following four

cases:

(1-

2
(a) If x> 4y and u > 4v, here we get F(o, X, y) = Tm)(x— 4y)
2
and F(o, u, v) = w(u —4v),

d(F (o, (x, y)). F(o, (U, v)))

X-4y u-4v

= (- 0%)| 5

u v-y. x—u+16(v—y)+3(v—y))

(
[+ T e e A
(
(

X—U V_y+l+ﬂ+£ Sincev<lU
6 6 30 30 30 4

X-u_ _Vv-y Sx_ 4u_ 4v
6 6 30 30 30

(1—032) 4X+4y  4u+4v
= x-u+v-y+ +

since y < lx
5 30 4

<

wn|x

(d(g(w, x), 9(®, u)) + d(g(w, y), g(w, v)) J
+d(g(w, x), F(o, (X, ¥))) + d(g(w, u), F(o, (u, v)))

d(g(w, X), g(o, u)) + d(g(w, y), g(w, v))
+d(g(w, X), Fw, (%, ¥)) + d(g(e, u), F(o, (U, v)))
+%[d(g(w, x), F(a, (U, v))) + d(g(w, u), F(a, (x, ¥))]

<

W x
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_ 2
(b) If x> 4y and u < 4v, here we get F(o, X, y) = %(X— 4y)

and F(w, u, v) =0,

d(F(w. (X, ¥)), F(o, (U, v)))

2 X—4y

2\ X

4XJ5r 4y) since Yy < %X

w|x

[d(g(w, X), g(w, u)) + d(g(e, u), F(w, (U, V)))j
+d(g(w, X), F(o, (%, ¥))

d(g(®, %), (o, u) + d(g(®, ), 9o, V)
+d(g(®, %), Fo, (x )+ d(g(o, u), F(o, (U v)
+2ld(g(o, ), F(o, (U, v)) + d(g(o, u), Fo, (x y)]

<

w|x

(c) If x <4y and u > 4v, here we get F(o, X, y) =0 and F(o, u, v)
2
= w(u — 4v),

d(F (o, (%, y)), F(o, (U, v)))

2(X U U 2¢(X U 5u
<(1- 2ror—|<(- 2y
<(1 m)(6+6+30)_(l m)(6+6+30j
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2
S%(X_{_u_l_w

< =
3 j since U < —V

_ E(d(g«», x), F(o, (x, y)) + d(g(w, u), F(o, (X, y)))}
3+ d(g(w, u), F(w, (U, v))

d(9(w, ), g(w, u)) + d(g(®, y), g(w, v))
+d(g(®, X), F(a, (x, y))) + d(g(o, u), F(o, (U, v)))
+ %[d(g(m, x), F(o, (U, v))) + d(g(w, u), F(o, (X, ¥)))]

<

wn|x

(d If x<4y and u<4v, here we get F(o, (X y))=0 and
F(o, (u, v)) = 0, it is trivial. Then from four cases, we have the hypotheses
of Corollary 3.1 are verified. Thus, (0,0) e X x X is a random coupled

coincidence and a random coupled fixed point of F and g.

As an application, it is easy to state a corollary of Theorem 3.3 involving

a contraction of integral type.

Corollary 3.4. Let F satisfy the conditions of Theorem 3.3 except that
condition (42) be replaced by the following: there exists a positive Lebesgue

integrable function ¢ on R such that I g o(w, t)dt > 0 for each & > 0 such
that

J'q)l(d(':(ma(xb y))= F(OJ, (U,V)))) (p((D, t)dt

0

y d(x,u), d(y,v), d(x, F(o,(x,¥))), d(u, F(w,(u,v))),
< J ) | S1d(x F o, (u.v)+d(u, F (o, (x y)] oo, t)dt

(806 (.1).d(x F (o, (x. ). (U F (0. (0. ).
_ f 0 2| Z1d(x, F (o, (wv)+d(u. F(o. ( Y))] o(w, t)dt.

Then F has a coupled random fixed point.
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